计算智能理论作业

计算智能理论作业

ID:14373044

大小:162.92 KB

页数:13页

时间:2018-07-28

计算智能理论作业_第1页
计算智能理论作业_第2页
计算智能理论作业_第3页
计算智能理论作业_第4页
计算智能理论作业_第5页
资源描述:

《计算智能理论作业》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、几种智能计算方法的研究及应用进展本文对几种常用的智能计算方法(遗传算法、粒子群优化算法、蚁群优化与免疫算法)的理论、特点进行了归纳总结,并对四种智能计算方法的应用范围和前景进行了概括和探讨。1、遗传算法1.1概述遗传算法[1]是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的自适应概率性随机化迭代搜索算法。1962年霍兰德(Holland)教授首次提出了GA算法的思想,它的基本思想是基于Darwin进化论和Mendel的遗传演说。Darwin进化论最重要的是适者生存的原理,它认为每一代种群总是向着

2、前进方向发展,越来越适应环境。每一个个体都有继承前代的特性,但不是完全继承,会产生一些新特性。最终只有适应环境的特征才能被保留下来。Mendel遗传学说最重要的是基因遗传原理,它认为遗传以密码方式存在细胞中,并以基因形式包含在染色体内。一条染色体中存在很多基因,每个基因有自己的位置并控制着外部特征;基因的产生和变异直接影响到个体的特性是否能适应环境。经过存优去劣的自然淘汰,适应性高的基因结构得以保存下来。遗传算法正是借用了仿真生物遗传学和自然选择机理,通过自然选择、遗传、变异等作用机制,实现各个个体的适应性的提高

3、。与自然界相似,遗传算法对求解问题的本身一无所知,从代表问题可能潜在解集的一个种群(population)开始,每一个种群则由经过基因(gene)编码(coding)的一定数目的个体(individual)构成。每个个体实际上是染色体(chromosome)带有特征的实体。把问题的解表示成染色体,并基于适应值来选择染色体,遗传算法所需要的仅是对算法所产生的每个染色体进行评价,使适应性好的染色体有更多的繁殖机会。在算法中也就是以二进制编码的串。并且,在执行遗传算法之前,给出一群染色体,也就是假设解。然后,把这些假设

4、解置于问题的“环境”中,也即在一个适应度函数中来评价。并按适者生存的原则,从中选择出较适应环境的染色体进行复制,淘汰低适应度的个体,再通过交叉,变异过程产生更适应环境的新一代染色体群。对这个新种群进行下一轮进化,直到最适合环境的值。1.2遗传算法的基本原理和特点1.2.1算法原理在遗传算法中,通过随机方式产生若干个所求解问题的数字编码,即染色体,形成初始种群;通过适应度函数给每个个体一个数值评价,淘汰低适应度的个体,选择高适应度的个体参加遗传操作,经过遗传操作后的个体集合形成下一代新的种群,再对这个新种群进行下一

5、轮进化,这就是遗传算法的基本原理。遗传算法的主要步骤如下:1)随机产生一个由确定长度的特征串组成的初始群体;2)对串群体迭代地执行步骤(1)和(2),直到满足停止准则:(1)计算群体中每个个体的适应值。(2)应用复制、杂交和变异算子产生下一代群体。3)把在任一代中出现的最好的个体串指定为遗传算法的执行结果。这个结果可以表示问题的一个解(或近似解)。基本遗传算法的流程图如图1-1,其中GEN是当前代数,M为每代种群中最大个体数。图1-1基本遗传算法的流程图1.2.2算法特点遗传算法的特点如下:1)遗传算法中不包含待

6、解决问题所持有的形态。它是从改变基因的配置来实现问题的整体优化的,因而属于自下而上的优化方法;2)类似于生物的进化过程,遗传算法处理的是变量集合的编码而非变量本身。它直接对结构对象进行操作,不存在求导和函数连续性的限定;3)遗传算法具有内在的隐并行性和更好的全局寻优能力;4)遗传算法采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些特点已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术之一。1.3

7、遗传算法的应用进入90年代后,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。尤其是遗传算法的应用研究显得格外活跃,不但它的应用领域扩大,而且利用遗传进行优化和规则学习的能力也显著提高,同时产业应用方面的研究也在摸索之中。遗传算法提供了一种求解复杂系统问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,所以广泛应用于很多学科。如工程结构优化、计算数学、制造系统、航空航天、交通、计算机科学、通信、电子学、材料科学等。1)GA在数值优化上的应用最优化问题是遗传算法经典应用

8、领域,但采用常规方法对于大规模、多峰态函数、含离散变量等问题的有效解决往往存在许多障碍。对全局变化问题,目前存在确定性和非确定性两类方法。前者以Brianin的下降轨线法、Levy的隧道法和R.Ge的填充函数为代表。该类方法虽然收敛快、计算效率高,但算法复杂,求得全局极值的概率不大。遗传算法作为现代最优化的手段,实践证明,它应用于大规模、多峰多态函数、含离散变量等情况下的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。