solutions to problems in sakurai's quantum mechanics - p. saltsidis, b. brinne

solutions to problems in sakurai's quantum mechanics - p. saltsidis, b. brinne

ID:14371080

大小:607.15 KB

页数:122页

时间:2018-07-28

solutions to problems in sakurai's quantum mechanics - p. saltsidis, b. brinne_第1页
solutions to problems in sakurai's quantum mechanics - p. saltsidis, b. brinne_第2页
solutions to problems in sakurai's quantum mechanics - p. saltsidis, b. brinne_第3页
solutions to problems in sakurai's quantum mechanics - p. saltsidis, b. brinne_第4页
solutions to problems in sakurai's quantum mechanics - p. saltsidis, b. brinne_第5页
资源描述:

《solutions to problems in sakurai's quantum mechanics - p. saltsidis, b. brinne》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、SolutionstoProblemsinQuantumMechanicsP.Saltsidis,additionsbyB.Brinne1995,19990MostoftheproblemspresentedherearetakenfromthebookSakurai,J.J.,ModernQuantumMechanics,Reading,MA:Addison-Wesley,1985.ContentsIProblems31FundamentalConcepts......................52Quantum

2、Dynamics........................73TheoryofAngularMomentum..................144SymmetryinQuantumMechanics................175ApproximationMethods.....................19IISolutions231FundamentalConcepts......................252QuantumDynamics........................

3、363TheoryofAngularMomentum..................754SymmetryinQuantumMechanics................945ApproximationMethods.....................10312CONTENTSPartIProblems31.FUNDAMENTALCONCEPTS51FundamentalConcepts01.1ConsideraketspacespannedbytheeigenketsfjaigofaHer-mitiano

4、peratorA.Thereisnodegeneracy.(a)ProvethatY0(A;a)0aisanulloperator.(b)Whatisthesigni canceof00Y(A;a)?000a;a000a6=a1(c)Illustrate(a)and(b)usingAsetequaltoSofaspinsystem.z21~1.2AspinsystemisknowntobeinaneigenstateofSn^with2eigenvalueh=2,wheren^isaunitvectorlyingin

5、thexz-planethatmakesananglewiththepositivez-axis.(a)SupposeSismeasured.Whatistheprobabilityofgetingx+h=2?(b)EvaluatethedispersioninS,thatis,x2h(S;hSi)i:xx(Foryourownpeaceofmindcheckyouranswersforthespecialcases=0,=2,and.)1.3(a)ThesimplestwaytoderivetheSchwarzi

6、nequalitygoesasfollows.Firstobserve(hj+hj)(ji+ji)0foranycomplexnumber;thenchooseinsuchawaythattheprecedinginequalityreducestotheSchwarzinequility.6(b)Showthattheequilitysigninthegeneralizeduncertaintyre-lationholdsifthestateinquestionsatis esAji=Bjiwith

7、purelyimaginary.(c)ExplicitcalculationsusingtheusualrulesofwavemechanicsshowthatthewavefunctionforaGaussianwavepacketgivenby"#200ihpix(x;hxi)02;1=4hxji=(2d)exp;2h4dsatis estheuncertaintyrelationqqh22h(x)ih(p)i=:2Provethattherequirement00hxjxji=(imaginarynu

8、mber)hxjpjiisindeedsatis edforsuchaGaussianwavepacket,inagreementwith(b).1.4(a)Letxandpbethecoordinateandlinearmomentuminxonedimension.EvaluatetheclassicalPoi

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。