an introduction to differential geometry with applications to elasticity - ciarlet

an introduction to differential geometry with applications to elasticity - ciarlet

ID:14363670

大小:1.62 MB

页数:215页

时间:2018-07-28

an introduction to differential geometry with applications to elasticity - ciarlet_第1页
an introduction to differential geometry with applications to elasticity - ciarlet_第2页
an introduction to differential geometry with applications to elasticity - ciarlet_第3页
an introduction to differential geometry with applications to elasticity - ciarlet_第4页
an introduction to differential geometry with applications to elasticity - ciarlet_第5页
资源描述:

《an introduction to differential geometry with applications to elasticity - ciarlet》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ANINTRODUCTIONTODIFFERENTIALGEOMETRYWITHAPPLICATIONSTOELASTICITYPhilippeG.CiarletCityUniversityofHongKongContentsPreface51Three-dimensionaldifferentialgeometry9Introduction..............................91.1Curvilinearcoordinates.......................111.2Metrictensor.

2、............................131.3Volumes,areas,andlengthsincurvilinearcoordinates......161.4Covariantderivativesofavectorfield................191.5Necessaryconditionssatisfiedbythemetrictensor;theRiemanncurvaturetensor...........................241.6Existenceofanimmersi

3、ondefinedonanopensetinR3withaprescribedmetrictensor.......................251.7Uniquenessuptoisometriesofimmersionswiththesamemetrictensor.................................361.8Continuityofanimmersionasafunctionofitsmetrictensor..442Differentialgeometryofsurfaces59Introd

4、uction..............................592.1Curvilinearcoordinatesonasurface................612.2Firstfundamentalform.......................652.3Areasandlengthsonasurface...................672.4Secondfundamentalform;curvatureonasurface.........692.5Principalcurvatures;Ga

5、ussiancurvature..............732.6Covariantderivativesofavectorfielddefinedonasurface;theGaußandWeingartenformulas...................792.7Necessaryconditionssatisfiedbythefirstandsecondfundamen-talforms:theGaußandCodazzi-Mainardiequations;Gauß’TheoremaEgregium............

6、.............822.8Existenceofasurfacewithprescribedfirstandsecondfundamen-talforms................................852.9Uniquenessuptoproperisometriesofsurfaceswiththesamefundamentalforms..........................952.10Continuityofasurfaceasafunctionofitsfundamentalform

7、s..10034Contents3Applicationstothree-dimensionalelasticityincurvilinearcoordinates109Introduction..............................1093.1TheequationsofnonlinearelasticityinCartesiancoordinates..1123.2Principleofvirtualworkincurvilinearcoordinates........1193.3Equationsofe

8、quilibriumincurvilinearcoordinates;covariantderivativesofatensorfield.....................1273.4Constitutiveequationincurvili

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。