identifying key variables and interactions in statistical models of building energy consumption using regularization

identifying key variables and interactions in statistical models of building energy consumption using regularization

ID:14363668

大小:891.63 KB

页数:12页

时间:2018-07-28

identifying key variables and interactions in statistical models of building energy consumption using regularization_第1页
identifying key variables and interactions in statistical models of building energy consumption using regularization_第2页
identifying key variables and interactions in statistical models of building energy consumption using regularization_第3页
identifying key variables and interactions in statistical models of building energy consumption using regularization_第4页
identifying key variables and interactions in statistical models of building energy consumption using regularization_第5页
资源描述:

《identifying key variables and interactions in statistical models of building energy consumption using regularization》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Energy83(2015)144e155ContentslistsavailableatScienceDirectEnergyjournalhomepage:www.elsevier.com/locate/energyIdentifyingkeyvariablesandinteractionsinstatisticalmodelsofbuildingenergyconsumptionusingregularization*DavidHsu210S34thStreet,Philadelphia,PA19104,USAartic

2、leinfoabstractArticlehistory:Statisticalmodelscanonlybeasgoodasthedataputintothem.DataaboutenergyconsumptionReceived2September2014continuestogrow,particularlyitsnon-technicalaspects,butthesevariablesareofteninterpretedReceivedinrevisedformdifferentlyamongdisciplines

3、,datasets,andcontexts.Selectingkeyvariablesandinteractionsistherefore9January2015animportantstepinachievingmoreaccuratepredictions,betterinterpretation,andidentificationofkeyAccepted4February2015subgroupsforfurtheranalysis.Availableonline6March2015Thispaperthereforem

4、akestwomaincontributionstothemodelingandanalysisofenergycon-sumptionofbuildings.First,itintroducesregularization,alsoknownaspenalizedregression,forprin-Keywords:cipledselectionofvariablesandinteractions.Second,thisapproachisdemonstratedbyapplicationtoaEnergyconsumpt

5、ionBuildingscomprehensivedatasetofenergyconsumptionforcommercialofficeandmultifamilybuildingsinNewVariableselectionYorkCity.Usingcross-validation,thispaperfindsthatanewly-developedmethod,hierarchicalgroup-Statisticalmodelslassoregularization,significantlyoutperformsrid

6、ge,lasso,elasticnetandordinaryleastsquaresap-proachesintermsofpredictionaccuracy;developsaparsimoniousmodelforlargeNewYorkCitybuildings;andidentifiesseveralinteractionsbetweentechnicalandnon-technicalparametersforfurtheranalysis,policydevelopmentandtargeting.Thismeth

7、odisgeneralizabletootherlocalcontexts,andislikelytobeusefulforthemodelingofothersectorsofenergyconsumptionaswell.©2015TheAuthor.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).1.Introductionincludingac

8、curatepredictions,theinterpretationofeffects,andidentificationofkeysubgroupsforfurtherphysics-basedmodelingStatisticalmodelsenableempirical

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。