资源描述:
《ash r.b. a course in commutative algebra (2003)(104s)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、1ACourseInCommutativeAlgebraRobertB.AshPrefaceThisisatextforabasiccourseincommutativealgebra,writteninaccordancewiththefollowingobjectives.Thecourseshouldbeaccessibletothosewhohavestudiedalgebraatthebeginninggraduatelevel.Forgeneralalgebraicbackground,seemyonlinetext“AbstractAlgebra:TheBasicGraduate
2、Year”,whichcanbedownloadedfrommywebsitewww.math.uiuc.edu/∼r-ashThistextwillbereferredtoasTBGY.Theideaistohelpthestudentreachanadvancedlevelasquicklyandefficientlyaspossible.InChapter1,thetheoryofprimarydecompositionisdevelopedsoastoapplytomodulesaswellasideals.InChapter2,integralextensionsaretreatedin
3、detail,includingthelyingover,goingupandgoingdowntheorems.Theproofofthegoingdowntheoremdoesnotrequireadvancedfieldtheory.ValuationringsarestudiedinChapter3,andthecharacterizationtheoremfordiscretevaluationringsisproved.Chapter4discussescompletion,andcoverstheArtin-ReeslemmaandtheKrullintersectiontheor
4、em.Chapter5beginswithabriefdigressionintothecalculusoffinitedifferences,whichclarifiessomeofthemanipulationsinvolvingHilbertandHilbert-Samuelpolynomials.ThemainresultisthedimensiontheoremforfinitelygeneratedmodulesoverNoetherianlocalrings.AcorollaryisKrull’sprincipalidealtheorem.Someconnectionswithalgeb
5、raicgeometryareestablishedviathestudyofaffinealgebras.Chapter6introducesthefundamentalnotionsofdepth,systemsofparameters,andM-sequences.Chapter7developsenoughhomologicalalgebratoprove,underappropratehypotheses,thatallmaximalM-sequenceshavethesamelength.ThebriefChapter8developsenoughtheorytoprovethatar
6、egularlocalringisanintegraldomainaswellasaCohen-Macaulayring.Aftercompletingthecourse,thestudentshouldbeequippedtomeettheKoszulcomplex,theAuslander-Buchsbaumtheorems,andfurtherpropertiesofCohen-Macaulayringsinamoreadvancedcourse.BibliographyAtiyah,M.F.andMacdonald,I.G.,IntroductiontoCommtativeAlgebr
7、a,Addison-Wesley1969Balcerzyk,S.andJozefiak,T.,CommutativeNoetherianandKrullRings,Wiley1989Balcerzyk,S.andJozefiak,T.,CommutativeRings:Dimension,MultiplicityandHomo-logicalMethods,Wiley1989Eisenbud,D.,C