资源描述:
《etingof p. mathematical notions of quantum field theory (lecture notes, web draft, 2002)(69s)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、MATHEMATICALIDEASANDNOTIONSOFQUANTUMFIELDTHEORY1.Generalitiesonquantumfieldtheory1.1.Classicalmechanics.Inclassicalmechanics,westudythemotionofaparticle.Thismotionisdescribedbya(vector)functionofonevariable,q=q(t),representingthepositionoftheparticleasafunctionoftime.T
2、hisfunctionmustsatisfytheNewtonequationofmotion,q¨=−U(q),whereUthepotentialenergy,andthemassoftheparticleis1.Anotherwaytoexpressthislawofmotionistosaythatq(t)mustbeasolutionofacertainvariationalproblem.Namely,oneintroducestheLagrangianq˙2L(q)=−U(q)2(thedifferenceofkine
3、ticandpotentialenergy),andtheactionfunctional�bS(q)=L(q)dta(forsomefixeda
4、solutionofthevariationalproblemdefinedbyS.Remark1.Thename“leastactionprinciple”comesfromthefactthatinsomecases(forexamplewhenU≤0)theactionisnotonlyextremizedbutalsominimizedatthesolutionq(t).Ingeneral,however,itisnotthecase,andthetrajectoryoftheparticlemaynotbeaminimu
5、m,butonlyasaddlepointoftheaction.Therefore,thelawofmotionisbetterformulatedasthe“extremal(orstationary)actionprinciple”;thisisthewaywewillthinkofitinthefuture.Remark2.PhysicistsoftenconsidersolutionsofNewton’sequationonthewholelineratherthanonafixedinterval[a,b].Inthisc
6、ase,thenaivedefinitionofanextremaldoesnotmakesense,sincethe�actionintegralS(q)=L(q)dtisimproperandingeneraldiverges.Instead,onemakesthefollowingR“correct”definition:afunctionq(t)onRisanextremalofSiftheexpression��d∂L∂L
7、s=0L(q+sε)dt:=(ε˙+ε¨+···),dsRR∂q∂q˙whereε(t)isanycom
8、pactlysupportedperturbation,isidenticallyzero.Withthisdefinition,theextremalsareexactlythesolutionsofNewton’sequation.1.2.Classicalfieldtheory.Inclassicalfieldtheory,thesituationissimilar.Inthiscase,weshouldthinknotofasingleparticle,butofa“continuumofparticles”(e.g.astrin
9、g,amembrane,ajetoffluid);sothemotionisdescribedbyaclassicalfield–a(vector)functionφ(x,t)dependingonbothspaceandtimecoor