etingof p. mathematical notions of quantum field theory (lecture notes, web draft, 2002)(69s)

etingof p. mathematical notions of quantum field theory (lecture notes, web draft, 2002)(69s)

ID:14357174

大小:1.12 MB

页数:69页

时间:2018-07-28

etingof p. mathematical notions of quantum field theory (lecture notes, web draft, 2002)(69s)_第1页
etingof p. mathematical notions of quantum field theory (lecture notes, web draft, 2002)(69s)_第2页
etingof p. mathematical notions of quantum field theory (lecture notes, web draft, 2002)(69s)_第3页
etingof p. mathematical notions of quantum field theory (lecture notes, web draft, 2002)(69s)_第4页
etingof p. mathematical notions of quantum field theory (lecture notes, web draft, 2002)(69s)_第5页
资源描述:

《etingof p. mathematical notions of quantum field theory (lecture notes, web draft, 2002)(69s)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、MATHEMATICALIDEASANDNOTIONSOFQUANTUMFIELDTHEORY1.Generalitiesonquantumfieldtheory1.1.Classicalmechanics.Inclassicalmechanics,westudythemotionofaparticle.Thismotionisdescribedbya(vector)functionofonevariable,q=q(t),representingthepositionoftheparticleasafunctionoftime.T

2、hisfunctionmustsatisfytheNewtonequationofmotion,q¨=−U(q),whereUthepotentialenergy,andthemassoftheparticleis1.Anotherwaytoexpressthislawofmotionistosaythatq(t)mustbeasolutionofacertainvariationalproblem.Namely,oneintroducestheLagrangianq˙2L(q)=−U(q)2(thedifferenceofkine

3、ticandpotentialenergy),andtheactionfunctional�bS(q)=L(q)dta(forsomefixeda

4、solutionofthevariationalproblemdefinedbyS.Remark1.Thename“leastactionprinciple”comesfromthefactthatinsomecases(forexamplewhenU≤0)theactionisnotonlyextremizedbutalsominimizedatthesolutionq(t).Ingeneral,however,itisnotthecase,andthetrajectoryoftheparticlemaynotbeaminimu

5、m,butonlyasaddlepointoftheaction.Therefore,thelawofmotionisbetterformulatedasthe“extremal(orstationary)actionprinciple”;thisisthewaywewillthinkofitinthefuture.Remark2.PhysicistsoftenconsidersolutionsofNewton’sequationonthewholelineratherthanonafixedinterval[a,b].Inthisc

6、ase,thenaivedefinitionofanextremaldoesnotmakesense,sincethe�actionintegralS(q)=L(q)dtisimproperandingeneraldiverges.Instead,onemakesthefollowingR“correct”definition:afunctionq(t)onRisanextremalofSiftheexpression��d∂L∂L

7、s=0L(q+sε)dt:=(ε˙+ε¨+···),dsRR∂q∂q˙whereε(t)isanycom

8、pactlysupportedperturbation,isidenticallyzero.Withthisdefinition,theextremalsareexactlythesolutionsofNewton’sequation.1.2.Classicalfieldtheory.Inclassicalfieldtheory,thesituationissimilar.Inthiscase,weshouldthinknotofasingleparticle,butofa“continuumofparticles”(e.g.astrin

9、g,amembrane,ajetoffluid);sothemotionisdescribedbyaclassicalfield–a(vector)functionφ(x,t)dependingonbothspaceandtimecoor

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。