a_panoramic_view_of_riemannian_geometry-m.berger

a_panoramic_view_of_riemannian_geometry-m.berger

ID:14357142

大小:8.26 MB

页数:874页

时间:2018-07-28

a_panoramic_view_of_riemannian_geometry-m.berger_第1页
a_panoramic_view_of_riemannian_geometry-m.berger_第2页
a_panoramic_view_of_riemannian_geometry-m.berger_第3页
a_panoramic_view_of_riemannian_geometry-m.berger_第4页
a_panoramic_view_of_riemannian_geometry-m.berger_第5页
资源描述:

《a_panoramic_view_of_riemannian_geometry-m.berger》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、MarcelBergerAPanoramicViewofRiemannianGeometry6thSeptember2002SpringerBerlinHeidelbergNewYorkBarcelonaHongKongLondonMilanParisTokyoPrefaceVIIIPrefaceRiemanniangeometryhasbecomeanimportantandvastsubject.Itdeservesanencyclopedia,ratherthanamodestlengthbook.Itisthereforeimpossibletopre

2、sentRiemanniangeometryinabookinthestandardfashionofmath-ematics,withcompletedefinitions,proofs,andsoon.Thiscontrastssharplywiththesituationin1943,whenPreissmann’sdissertation1943[1041]pre-sentedalltheglobalresultsofRiemanniangeometry(butforthetheoryofsymmetricspaces)includingnewones,

3、withproofs,inonlyfortypages.Moreover,evenattherootofthesubject,theideaofaRiemannianmani-foldissubtle,appealingtounnaturalconcepts.Consequently,allrecentbooksonRiemanniangeometry,howevergoodtheymaybe,canonlypresenttwoorthreetopics,havingtospendquiteafewpagesonthefoundations.Sinceoura

4、imistointroducethereadertomostofthelivingtopicsofthefield,wehavehadtofollowtheonlypossiblepath:topresenttheresultswithoutproofs.Ouraimistwofold,asannouncedbyoursubtitle.ThefirstistointroducethevariousconceptsandtoolsofRiemanniangeometryinthemostnaturalway;ormore,todemonstratethatoneis

5、practicallyforcedtodealwithabstractRiemannianmanifoldsinahostofintuitivegeometricalquestions.Thisexplainstheword“introduction”andthefactthatalongfirstchapterwilldealwithproblemsintheEuclideanplane.Secondly,onceequippedwiththeconceptofRiemannianmanifold,wewillpresentapanoramaofcurrent

6、dayRiemanniangeometry.Apanoramaisneverafull360degrees,sowewillnotpretendtobecomplete,buthopethatourpanoramawillbelargeenoughtoshowthereaderasubstantialpartoftoday’sRiemanniangeometry.Andinapanorama,youseethepeaks,butyoudonotclimbthem.Thisisawaytosay,bycaricature,thatwewillnotproveth

7、estatementswequote.But,inapanorama,sometimesyoucanstillseethepathtoasummit.Herethismeansthatinmanycaseswewillexplainthemainideasorthemainingredientsfortheproof.Wehopethatthiswayofwritingwillleavemanyreaderswantingtoclimbsomepeak.Wewillgivealltheneededreferencestotheliteratureasthein

8、troductionandthepan

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签