自动推理及其在数学教育中的应用

自动推理及其在数学教育中的应用

ID:14353670

大小:240.00 KB

页数:8页

时间:2018-07-28

自动推理及其在数学教育中的应用_第1页
自动推理及其在数学教育中的应用_第2页
自动推理及其在数学教育中的应用_第3页
自动推理及其在数学教育中的应用_第4页
自动推理及其在数学教育中的应用_第5页
资源描述:

《自动推理及其在数学教育中的应用》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、自动推理及其在数学教育中的应用张景中1,2,3,彭翕成1(1.华中师范大学教育部教育信息技术工程研究中心,武汉430079;2.广州大学教育软件研究所,广州510006;3.中国科学院成都计算机应用研究所,成都610041;)摘要:本文介绍了自动推理的研究历史以及研究意义,并分别从几何作图、符号运算、几何证明、动画设计和机器学习等5个方面论述了自动推理在数学教育中的应用。最后,对智能软件的开发提出了一些建议。关键词:人工智能;自动推理;智能软件一、自动推理是人工智能中最成功的部分人工智能的研究内容,包括人类智能的机理和如何用机器模拟人的智能。人的智能包括感知与反

2、应(人和动物都有的智能)以及运用符号计算与进行推理(人类独有的智能)。能看、能听,并对看到、听到的事情做出反应,这些智能不光是人有,很多动物都有。植物有没有呢?植物能不能感受到外界呢?从表面现象看植物好像有,比如说,暖了,它慢慢就要发芽;冷了,它就要赶快结籽。北方有句俗话说“立秋十八天,寸草结籽”。植物能感知世界,但它没有神经系统,不像动物反应那么快。动物的智能是很明显的,它能看见、听见周围的东西,有什么危险,有什么机遇,它都能够感觉到,它能区别开来。譬如说我们在电视上经常看到,一个猎豹看见羚羊,它知道是个机遇,就会去追;如果看到比它凶、比它大的动物,比方说狮子

3、,它就会躲。这表现出来一种智能。但是有些智能是人才有的,会使用符号,会去推理;而动物对外界的反应都比较直接。比方说养猪,饲养员去喂它,它对饲养员就有好感,饲养员来了之后它就要叫,知道是来喂它的,但它不会推理出来:喂肥之后,将来是要杀我的,他不会无缘无故地喂我。猪没有这个逻辑思维能力,而且一代一代地也不会传递这个信息。实际上,动物是没有思维能力的,而人可以用符号,用语言推理。动物的符号是生理符号,通过发出各种不同的声音,像鲸鱼有鲸鱼的声音,海豚有海豚的声音,以此来互相传递信息,但是现在还没有发现动物使用符号,利用文字。在这一点上,人是独特的,人可以进行很复杂的推理

4、,这种智能是人独有的智能。人通过推理,可以由此及彼,由表及里,去粗取精,去伪存真,所以自动推理在人工智能中是个非常重要的部分[1]。如果去掉了推理,就等同于一般动物的智能了。让机器怎么看,机器怎么听,这是不够的,很多复杂的事情,机器还是做不了。计算机到现在有六十多年的历史了,现在看来,自动推理是人工智能中最为成功的部分,用得也最多。人工智能的其他很多部分,虽然下了很大功夫研究,但进展比较慢。二、自动推理研究的历史追本溯源,中国古代有一部书,叫做《九章算术》,它就把当时人们关心的数学问题分成九类,比方说计算体积,计算面积等等共九类,并对这九类分别给出解答。它给出的

5、解答是机械化的,无论是数学水平高的或是低的,只要学了这个方法,按照方法操作就一定能够找到问题的答案;而自动推理的基本思想就是希望对一类一类问题分别给出一个一个确定的,能够机械地执行的解决方案,所以吴文俊院士认为,“算法思想是中国古代数学中产生的。”西方的数学,基本上源于古希腊的几何,它提一些公理,提一些假设,根据这些假设,看能证明什么,一个一个定理的做。中国古代没有提出一般的假设,没有提出公理系统,只提出很多问题,针对每个问题,找出解答的方法。当然,这两种方法在学术上讲,对科学的发展各有长处。从一段时间看,中国没有公理系统,在科学的发展上是受到影响了的,吃了亏的

6、。现在有了计算机,中国古代的算法思想,自动推理的思想,机械化的思想,又重新发扬光大起来。[2]西方古代虽然没有算法思想,但到了十六、十七世纪,法国的笛卡尔提出一个设想:“一切问题化为数学问题,一切数学问题要化为方程组,化为代数方程组,代数方程组化为一个方程,这一个方程我们就能解决。”笛卡尔这个宏伟的计划实现起来是比较困难的。比笛卡尔又晚了差不多一百多年,德国的莱布尼茨提出过用机器推理的思想。他很明确地提出要建立一门通用的语言,用符号来代表逻辑关系,这样的话,就能做一个机器进行推理。如果在人们争论不休的时候,让机器推一推,看看到底谁对,但是他的通用语言没有设计成功

7、。后来,建立一门通用的语言用符号来代表逻辑关系是布尔。他提出我们大家知道的布尔代数,又叫逻辑代数。计算机的逻辑运算就基于这个逻辑代数。再后来,希尔伯特提出用机械的方法证明一类的几何问题。哪一类的呢?就是只涉及到关联性几何命题。什么叫关联性?就是点在直线上,直线通过点,两个直线相交或平行这类性质。如果一个命题只涉及到这些性质的话,他就有办法能够手到擒来。大家不要以为只涉及到关联性质就很简单。其实涉及到关联性质的几何定理有时比较麻烦,例如有名的帕普斯定理,巴斯卡定理。这样的定理,很多人不知道怎么下手。希尔伯特这个设想就具有机械化的思想,但一直没人注意到这一点,直到吴

8、文俊院士将其指出。到希尔

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。