arcgis教程:几种克里金法的概述

arcgis教程:几种克里金法的概述

ID:14323859

大小:99.04 KB

页数:6页

时间:2018-07-27

arcgis教程:几种克里金法的概述_第1页
arcgis教程:几种克里金法的概述_第2页
arcgis教程:几种克里金法的概述_第3页
arcgis教程:几种克里金法的概述_第4页
arcgis教程:几种克里金法的概述_第5页
资源描述:

《arcgis教程:几种克里金法的概述》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、地理国情监测云平台ArcGIS教程:几种克里金法的概述  1、普通克里金法  普通克里金法假设模型为  Z(s)=µ+ε(s)  其中,µ是一个未知常量。对于普通克里金法,我们所关心的主要问题之一就是对常量平均值的假设是否合理。有时有很充分的科学依据来拒绝该假设。不过,作为一种简单的预测方法,它具有显著的灵活性。下图所举的是处于某一空间维度中的示例:  从图上看,数据好像是从山谷或山体的线横断面中采集的高程值。而且,好像数据在左侧变化更显著,而在右侧则变得更平滑。事实上,该数据是在平均值µ为常量的情

2、况下基于普通克里金法模型模拟得到的。虚线给出的是平均值,该平均值是是真值但是是未知的。因此,普通克里金法可用于似乎带有某种趋势的数据。单凭数据无法确定已观测到的模式是否是自相关(µ为常量的情况下,在误差ε(s)之间)或趋势(µ(s)随s变化)所造成的。普通克里金法可以使用半变异函数或协方差(用于表达空间自相关的数学形式),使用变换和移除趋势,还允许测量误差。2、简单克里金法简单克里金法假设模型为:  Z(s)=µ+ε(s)北京数字空间科技有限公司地理国情监测云平台  其中,µ是已知常量  例如,下图

3、中使用的数据与普通克里金法和泛克里金法概念介绍中所使用的数据相同,观测数据以实心圆的形式给出:  虚线表示的已知常量为µ。这点可以与普通克里金法进行比较。对于简单克里金法,因为假设确切已知µ,那么也确切已知数据位置上的ε(s)。对于普通克里金法,如果估算了µ,那么也会估算ε(s)。如果已知ε(s),可以比估算ε(s)时更好地估算自相关。通常,已知确切平均值µ的假设是不现实的。但是,有时候,假定一个基于物理的模型能够给出已知趋势却是有意义的。由此可以使用模型和观测值的差值(称为残差),并且假设残差中的

4、趋势已知为零,可以在残差上使用简单克里金法。简单克里金法可以使用半变异函数或协方差(用于表达自相关的数学形式)和变换,并且允许测量误差。3、指示克里金法  指示克里金法假设模型为  I(s)=µ+ε(s),  其中,µ是一个未知常量,I(s)是一个二进制变量。二进制数据的创建可利用连续数据的阈值实现,或者观测数据可以为0或1。例如,假设存在一个由某点是否为森林栖息地或非森林栖息地的相关信息组成的样本,则其中二进制变量用来指示这两种类别。使用二进制变量时,指示克里金法的处理过程与普通克里金法相同。  

5、在下图中,已使用了解阈值中介绍的阈值将数据转换为二进制值。北京数字空间科技有限公司地理国情监测云平台  用空心方块给出了观测的二进制数据。虚线表示所有指示变量的未知平均值,即µ。可以将这一点与普通克里金法进行比较。在使用普通克里金法时,假设ε(s)是自相关的。请注意,因为指示变量为0或1,所以插值结果将位于0和1之间,而且基于指示克里金法的预测可解释为变量是1的概率或属于1所指示的类别的概率。如果创建指示变量时使用了阈值,则生成的插值地图会显示超出(或低于)阈值的概率。  通过选择多个阈值可以为同一

6、数据集创建多个指示变量。在本例中,一个阈值创建主要指示变量,而另一个指示变量则用作协同克里金法中的次要变量。指示克里金法可使用半变异函数或协方差,它们都是用于表达自相关的数学形式。4、概率克里金法  概率克里金法假设模型为  I(s)=I(Z(s)>ct)=µ1+ε1(s)Z(s)=µ2+ε2(s),  其中µ1和µ2为未知常量,I(s)是通过使用阈值指示I(Z(s)>ct)创建的二进制变量。请注意,现在有两种类型的随机误差:ε1(s)和ε2(s),因此它们各自存在自相关,并且它们之间存在互相关。概

7、率克里金法要实现指示克里金法相同的功能很吃力,而使用协同克里金法进行尝试则可更好地实现。  例如,在下图中普通克里金法、泛克里金法、简单克里金法和指示克里金法概念使用相同的数据,请注意标注为Z(u=9)的基准的指示变量为I(u)=0,标注为Z(s=10)的基准的指示变量为I(s)=1。北京数字空间科技有限公司地理国情监测云平台  如果要预测它们中间的位于x坐标9.5处的值,单独使用指示克里金法将给出接近0.5的预测值。但是,可以看出Z(s)刚好高于阈值,而Z(u)却远低于阈值。因此,有理由相信位置9

8、.5处的指示预测值应该小于0.5。概率克里金法尝试利用原始数据中除二进制变量之外的其他信息。但是,这也存在一些代价。必须要进行更多的估算,包括估算每个变量的自相关和互相关。然而,每次估算未知的自相关参数时,都会引入更多的不确定性,因此概率克里金法可能不值得付出额外努力。概率克里金法可以使用半变异函数或协方差(用于表达自相关的数学形式)、交叉协方差(用于表达互相关的数学形式)和变换,但是不允许测量误差。5、析取克里金法  析取克里金法假设的模型为  f(Z(s))=µ1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。