欢迎来到天天文库
浏览记录
ID:14315019
大小:3.28 MB
页数:478页
时间:2018-07-27
《galois theory of linear differential equations - m. van der put, m. singer》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、GaloisTheoryofLinearDifferentialEquationsMariusvanderPutDepartmentofMathematicsUniversityofGroningenP.O.Box8009700AVGroningenTheNetherlandsMichaelF.SingerDepartmentofMathematicsNorthCarolinaStateUniversityBox8205Raleigh,N.C.27695-8205USAJuly2002iiPrefaceThisbookisanintroductiontothealgebraic,alg
2、orithmicandanalyticaspectsoftheGaloistheoryofhomogeneouslineardifferentialequations.AlthoughtheGaloistheoryhasitsoriginsinthe19thCenturyandwasputonafirmfootingbyKolchininthemiddleofthe20thCentury,ithasexperiencedaburstofactivityinthelast30years.Inthisbookwepresentmanyoftherecentresultsandnewappro
3、achestothisclassicalfield.Wehaveattemptedtomakethissubjectaccessibletoanyonewithabackgroundinalgebraandanalysisatthelevelofafirstyeargraduatestudent.Ourhopeisthatthisbookwillprepareandenticethereadertodelvefurther.Inthisprefacewewilldescribethecontentsofthisbook.Variousresearchersareresponsiblefo
4、rtheresultsdescribedhere.Wewillnotattempttogiveproperattributionsherebutreferthereadertoeachoftheindividualchaptersforappropriatebibliographicreferences.TheGaloistheoryoflineardifferentialequations(whichweshallrefertosimplyasdifferentialGaloistheory)istheanalogueforlineardifferentialequationsofthe
5、classicalGaloistheoryforpolynomialequations.Thenaturalanalogueofafieldinourcontextisthenotionofadifferentialfield.Thisisafieldktogetherwithaderivation∂:k→k,thatis,anadditivemapthatsatisfies∂(ab)=∂(a)b+a∂(b)foralla,b∈k(wewillusuallydenote∂afora∈kasa).ExceptforChapter13,alldifferentialfieldswillbeofcha
6、racteristiczero.Alineardifferentialequationisanequationoftheform∂Y=AYwhereAisann×nmatrixwithentriesinkalthoughsometimesweshallalsoconsiderscalarlineardifferentialequationsL(y)=∂ny+a∂n−1y+···+ay=0(theseobjectsn−10areingeneralequivalent,asweshowinChapter2).Onehasthenotionofa“splittingfield”,thePicar
7、d-Vessiotextension,whichcontains“all”solutionsofL(y)=0andinthiscasehastheadditionalstructureofbeingadifferentialfield.ThedifferentialGaloisgroupisthegroupoffieldautomorphismsofthePicard-Vessiotfieldfixingthebasefieldandcommutingwiththede
此文档下载收益归作者所有