galois theory of linear differential equations - m. van der put, m. singer

galois theory of linear differential equations - m. van der put, m. singer

ID:14315019

大小:3.28 MB

页数:478页

时间:2018-07-27

galois theory of linear differential equations - m. van der put, m. singer_第1页
galois theory of linear differential equations - m. van der put, m. singer_第2页
galois theory of linear differential equations - m. van der put, m. singer_第3页
galois theory of linear differential equations - m. van der put, m. singer_第4页
galois theory of linear differential equations - m. van der put, m. singer_第5页
资源描述:

《galois theory of linear differential equations - m. van der put, m. singer》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、GaloisTheoryofLinearDifferentialEquationsMariusvanderPutDepartmentofMathematicsUniversityofGroningenP.O.Box8009700AVGroningenTheNetherlandsMichaelF.SingerDepartmentofMathematicsNorthCarolinaStateUniversityBox8205Raleigh,N.C.27695-8205USAJuly2002iiPrefaceThisbookisanintroductiontothealgebraic,alg

2、orithmicandanalyticaspectsoftheGaloistheoryofhomogeneouslineardifferentialequations.AlthoughtheGaloistheoryhasitsoriginsinthe19thCenturyandwasputonafirmfootingbyKolchininthemiddleofthe20thCentury,ithasexperiencedaburstofactivityinthelast30years.Inthisbookwepresentmanyoftherecentresultsandnewappro

3、achestothisclassicalfield.Wehaveattemptedtomakethissubjectaccessibletoanyonewithabackgroundinalgebraandanalysisatthelevelofafirstyeargraduatestudent.Ourhopeisthatthisbookwillprepareandenticethereadertodelvefurther.Inthisprefacewewilldescribethecontentsofthisbook.Variousresearchersareresponsiblefo

4、rtheresultsdescribedhere.Wewillnotattempttogiveproperattributionsherebutreferthereadertoeachoftheindividualchaptersforappropriatebibliographicreferences.TheGaloistheoryoflineardifferentialequations(whichweshallrefertosimplyasdifferentialGaloistheory)istheanalogueforlineardifferentialequationsofthe

5、classicalGaloistheoryforpolynomialequations.Thenaturalanalogueofafieldinourcontextisthenotionofadifferentialfield.Thisisafieldktogetherwithaderivation∂:k→k,thatis,anadditivemapthatsatisfies∂(ab)=∂(a)b+a∂(b)foralla,b∈k(wewillusuallydenote∂afora∈kasa).ExceptforChapter13,alldifferentialfieldswillbeofcha

6、racteristiczero.Alineardifferentialequationisanequationoftheform∂Y=AYwhereAisann×nmatrixwithentriesinkalthoughsometimesweshallalsoconsiderscalarlineardifferentialequationsL(y)=∂ny+a∂n−1y+···+ay=0(theseobjectsn−10areingeneralequivalent,asweshowinChapter2).Onehasthenotionofa“splittingfield”,thePicar

7、d-Vessiotextension,whichcontains“all”solutionsofL(y)=0andinthiscasehastheadditionalstructureofbeingadifferentialfield.ThedifferentialGaloisgroupisthegroupoffieldautomorphismsofthePicard-Vessiotfieldfixingthebasefieldandcommutingwiththede

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。