introduction to the calculus of variations - bernard dacorogna

introduction to the calculus of variations - bernard dacorogna

ID:14312850

大小:4.33 MB

页数:241页

时间:2018-07-27

introduction to the calculus of variations - bernard dacorogna_第1页
introduction to the calculus of variations - bernard dacorogna_第2页
introduction to the calculus of variations - bernard dacorogna_第3页
introduction to the calculus of variations - bernard dacorogna_第4页
introduction to the calculus of variations - bernard dacorogna_第5页
资源描述:

《introduction to the calculus of variations - bernard dacorogna》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、TLFeBOOKPublishedbyImperialCollegePress57SheltonStreetCoventGardenLondonWC2H9HEDistributedbyWorldScientificPublishingCo.Pte.Ltd.5TohTuckLink,Singapore596224USAoffice:27WarrenStreet,Suite401-402,Hackensack,NJ07601UKoffice:57SheltonStreet,CoventGarden,LondonW

2、C2H9HEBritishLibraryCataloguing-in-PublicationDataAcataloguerecordforthisbookisavailablefromtheBritishLibrary.OriginallypublishedinFrenchunderthetitle:‹‹Introductionaucalculdesvariations››©1992Pressespolytechniquesetuniversitairesromandes,Lausanne,Switzerla

3、ndAllrightsreservedINTRODUCTIONTOTHECALCULUSOFVARIATIONSCopyright©2004byImperialCollegePressAllrightsreserved.Thisbook,orpartsthereof,maynotbereproducedinanyformorbyanymeans,electronicormechanical,includingphotocopying,recordingoranyinformationstorageandret

4、rievalsystemnowknownortobeinvented,withoutwrittenpermissionfromthePublisher.Forphotocopyingofmaterialinthisvolume,pleasepayacopyingfeethroughtheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA01923,USA.Inthiscasepermissiontophotocopyisnotrequiredfr

5、omthepublisher.ISBN1-86094-499-XISBN1-86094-508-2(pbk)PrintedinSingapore.IntroductiontothecalculusofvariationsBernardDacorognaContentsPrefacetotheEnglishEditionixPrefacetotheFrenchEditionxi0Introduction10.1Briefhistoricalcomments......................10.2Mo

6、delproblemandsomeexamples.................30.3Presentationofthecontentofthemonograph...........71Preliminaries111.1Introduction..............................111.2ContinuousandHöldercontinuousfunctions............121.2.1Exercises...........................16

7、1.3Lpspaces...............................161.3.1Exercises...........................231.4Sobolevspaces............................251.4.1Exercises...........................381.5Convexanalysis............................401.5.1Exercises....................

8、.......432Classicalmethods452.1Introduction..............................452.2Euler-Lagrangeequation.......................472.2.1Exercises...........................572.3SecondformoftheEuler-Lagrangee

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。