欢迎来到天天文库
浏览记录
ID:14270737
大小:1.47 MB
页数:26页
时间:2018-07-27
《大学毕设论文__储油罐的变位识别与罐容表标定模型数学建模论文.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、2010高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。我们参赛选择的题号是(从A/B/C/D中选择一项填写):A我们的参赛报名号为(如果赛区设置报
2、名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):日期:2010年9月13日赛区评阅编号(由赛区组委会评阅前进行编号):2010高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):储油罐的变位识别与罐容表标定摘要本文旨在对储油罐的变位情况进行分析,并建立体积积分模型对罐容表的标定值进行求解计算。根据题意要求对发生变位,即纵倾与横滚情况下的储油罐罐容表
3、进行正确的标定定位,需要标定的油罐分为两种,通过分析我们考虑到,对于椭圆柱体油罐和实际油罐其初步的分析情况是一致的,都需求解出两侧的面积,并在此基础上对圆柱的变化情况进行积分,并根据其特有的结构进行一定的近似积分求解。本题所涉及到主要工作有体积积分模型的建立,数据的拟合,误差的分析以及罐容表的标定。对于第一问,要求对椭圆型的储油罐进行罐容表标定,由于椭圆油罐的倾斜角是已知的,故我们可以根据正切关系求解出测量高度下的左侧面的液面高度,为了积分求解的方便,我们建立椭圆曲线方程式,并移动坐标轴至椭圆低端,进一步在转化为极坐标的情况下,对相应液面高度的椭圆面积进行积分,从而得到左侧液面高度的面
4、积值。通过分析我们考虑到,由于液面是按一定的规律从左至右倾斜而下,以及考虑到斜液面的积分分为三段高度,故我们在求解出左侧面积的基础上对斜率变化下的椭圆面积进行分段积分,由此得到椭圆柱体储油罐相应高度的体积情况,通过对原始数据的比较,发现有一定的误差,并按油面的高度成二次曲线的关系,最后我们根据体积积分模型以及结合误差关系曲线得出了120个间隔为1cm高度的椭圆柱油罐体体积。对于第二问,要求对实际的球冠柱体的储油罐进行罐容表的标定,由于题中所给的纵倾角和横滚角是未知的,故我们需要在建立模型的基础上用最小二乘法拟合得到角度的参数。通过分析我们考虑到附件2中的油量累加体积数据可能存有很大的误
5、差,而两个时间点下少量的出油体积数据是准确无误的,故拟合参数时,必须要把前一个高度下计算得出的体积量减去下一个的体积量。在建立模型时,我们使用了坐标变换的方法并结合使用两个切面的二重积分方法得出了中间圆柱体的体积,进一步的我们对两个球冠头依次按照横切和纵切的一重积分法得出其相应体积,由于切割面积是建立在相对于油罐的水平情况下,而液面的高度是水平于地平线的,故还存有一个小切块体积,我们同样使用三角形近似切割积分法对两个球冠头下剩余的切块体积进行求解。综合以上三个积分体积之和以及在考虑到液面的分段情况下,我们使用逐步搜索法对角度参数进行精度搜索并结合最小二乘法得出了的值为。最后我们根据得出
6、的角度值计算出了30个间隔为10cm高度的储油罐体积值。本文最后对模型的优缺点进行了分析,并对在相互变化的情况下进行了灵敏度分析。文章中我们使用了大量的图表使抽象的理论情况更为形象化。关键词:最小二乘拟合体积积分纵倾横滚坐标变换逐步搜索法1问题重述通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以
7、下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。(1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。(2)对于图1所示的实际储油罐,试建立罐
此文档下载收益归作者所有