欢迎来到天天文库
浏览记录
ID:14269673
大小:1.66 MB
页数:15页
时间:2018-07-27
《金准人工智能 深度学习在医疗影像分析中的应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、金准人工智能深度学习在医疗影像分析中的应用前言现代医学影像取得重大进步的一个原因,其实就是基于不同成像设备的巨大发展,比如CT断层成像、核磁共振扫描、三维超声等,都可以在没有创伤或微创的情况下,观察人体内部的细微组织结构,在疾病的早期检测、找到疾病的病因以及病灶位置方面带来了极大的增强,从而可以让医生尽早确定治疗方案。另外,在人体的不同部位,不同疾病的表现方式也都不太一样,检测方法也不一样,市场上的一些人工智能产品针对不同的成像仪器,涵盖了人体的多个部位,来对一些高发以及高危的疾病进行智能辅助诊断。现在大多着重的是比较高危害的疾病,包括各种恶性的癌症、心血管常见疾病以及脑血
2、管疾病等。现在世界卫生组织预测21世纪人类第一杀手,就是一些常见的恶性癌症。全球每年大概有700万人死于癌症,而在中国,恶性肿瘤发病率也非常高,每年发病率平均在160万左右,死亡数量也相当高,达到130万,恶性肿瘤在所有的死亡病例里面占了1/5左右,是现代危害非常严重的一种疾病。而肺癌更是恶性肿瘤里面发病率最高的恶性肿瘤之一,其五年生存率仅仅为15%左右。从上图我们可以看到肺癌在男性发病率里面是最高的,女性群体中乳腺癌是最高的,而其次就是肺癌。因此肺癌在整个恶性肿瘤中是最严重的一种,但是实际上我们也不应该谈癌变色,而是要尽早地发现和治疗,这样才能提高治愈率。一、低剂量胸部扫
3、描是否能识别结节的良恶性肺癌之所以可怕,是因为它的初期症状非常不明显,很容易被忽略掉,而到了晚期则会发生癌细胞转移,导致治疗非常困难。美国肿瘤协会一系列的研究表明,检测肺部结节是早期发现肺癌的一个非常有效的手段。由于肺部结节肿瘤的尺寸很小,在传统的X-ray胸部透视平片上是很难看到的,而通过低剂量CT进行早期筛查,能够极大地提高早期肺癌的诊断率。我们知道,CT断层成像是分辨率非常高的三维成像,所以它的数据量也非常大。每个病人基本上都有几百张断片成像,这样就导致了医生诊断非常困难,花的时间也非常多。由于它诊断的困难性,所以有不少人在很早期时就提出来用计算机辅助诊断,利用计算机
4、的大运算量来帮助医生进行诊断,一直到深度学习的出现,才使得这个想法变得可行,因为早期诊断算法的诊断效率以及准确率都比较低,不能达到实用的要求。随着深度学习的出现,在各种诊断率上面有了显著的提高,也使得计算机辅助诊断的想法成为了可能。就肺癌诊断这个方向来说,其实绝大多数其他疾病的诊断跟肺癌诊断的应用场景是比较相似的。由于数据量非常庞大,由医生一张张来找是非常困难的一件事情。所以,我们可以通过算法来自动进行疾病的病灶检测和定位,在进行了病灶的定位以后,还可以做一些辅助性的定性分析,比如结节的良恶性判断等工作,由于有随访的要求,那么一个病人可能是在经过半年时间左右再回来复查的时候
5、,我们需要了解结节的变化大小,所以这些数据由计算机来计算,就非常方便。深度学习由于它快速有效的运算以及非常高的精度,使得其在不少实际的识别问题中已经达到了接近人的视觉经验的水平,同时它是比较智能化的,可以通过大量数据的训练来增强它的准确性。深度学习应用在医学中也可以去生成自动学习的特征来进行疾病的识别和判断,也可以自动生成结构化的诊断报告,辅助进行科学研究以及教学培训。二、深度学习较之传统CAD技术的优势那么传统的CAD技术为什么达不到这些效果呢?在传统的CAD技术里,主要是通过医学影像分析,由那些有很多经验的人来设计一些比较适合做不同类型疾病检测的特征值,比如纹理分析、边
6、缘检测以及物体检测的各种不同的特征函数,比如SIFT或HoG等。但是这些特征的训练完全是通过人来实现的,而人需要去看大量的病例,然后从数据中总结出经验,而且不可能用太多的特征来做这件事情,所以导致了疾病的诊断率一直上不来,同时在面对不同疾病的时候,又需要设计一套完全不同的特征向量,这也是传统CAD技术没办法很快地应用到医学的不同领域中去的原因。随着深度学习技术的出现,它对我们最大的贡献是提供了一套可以从大量数据中自动学习最有效特征的算法。其实它也是在模拟人的视觉系统及识别系统中的一些实现方式,比如,以前人是通过看大量的图像来人为地选取特征,而现在变成利用梯度的反向传播原理来
7、自动提取特征向量。深度学习的另外一个好处,就是它在训练的过程中,一直专注于优化准确率,而且它可以通过看大量的训练数据来实现最优的准确率,如果让人类来做这个设计的话,几乎是不可能实现的。我们不可能去把所有的图都去算一遍,然后去调整阈值,调整各种权重之类的参数来达到最优,现在这些都是由具备超强运算能力的GPU来实现的。上图显示深度学习训练出来的特征向量,我们可以看到,其实在前几层的时候,深度学习选出来的特征向量跟人选出来的特征值是非常接近的。比如各种不同角度的edgedetection,以前人类来设计特征向量也有各种角
此文档下载收益归作者所有