浅谈初中数学教学中如何进行数学思想方法的渗透(新)

浅谈初中数学教学中如何进行数学思想方法的渗透(新)

ID:14244086

大小:31.50 KB

页数:4页

时间:2018-07-27

浅谈初中数学教学中如何进行数学思想方法的渗透(新)_第1页
浅谈初中数学教学中如何进行数学思想方法的渗透(新)_第2页
浅谈初中数学教学中如何进行数学思想方法的渗透(新)_第3页
浅谈初中数学教学中如何进行数学思想方法的渗透(新)_第4页
资源描述:

《浅谈初中数学教学中如何进行数学思想方法的渗透(新)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、浅谈初中数学教学中如何进行数学思想方法的渗透所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。数学思想是数学的灵魂,数学方法是数学的行为。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。若把数学知识看作一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张张蓝图就相当于数学思想。数学知识的发生、发展过程,也是数学思

2、想方法不断完善与创新的过程。伴随课程改革日益深入,数学观念不断更新,数学思想方法的重要性也就越来越凸显出来。《课程标准》指出,要让不同的人在数学上得到不同的发展,其中最重要的就是学生数学思想方法的形成与发展。对学生来说,“作为知识的数学出校门不到两年可能就忘了,唯有深深铭记在头脑中的是数学的精神、数学的思想、研究方法和着眼点等。这些都随时随地发生作用,使他们终生受益。”(日本数学家米山国藏语)。那么,作为初中数学教师,在教学实践中,如何挖掘并系统地向学生进行数学思想方法的教育应是一个值得深思的课题

3、。下面我就谈谈自己在平时的教学中如何进行数学思想方法的渗透。1、备课时深入挖掘备课时,有不少教师只重视章节中的基本知识和技能,却有意无意地忽略存在于其中的数学思想方法,有些甚至对发现和运用这些知识中至关重要的思想方法视而不见。其实数学思想方法是联系知识的桥梁,是帮助学生产生灵感使其变聪明的法宝。因此,教师备课的重要任务之一就是把存在于教材中的思想方法潜心挖掘出来。对教材的研究应包括对数学思想方法的研究,必须弄清章节中到底隐含着怎样的思想方法,这些思想与方法又集中体现在什么知识点中。例如,数学教材中

4、处处体现了转化思想。学习了负数和相反数,可把减法转化为加法,使加减法完美统一;又如,引入数轴概念时,第一次把抽象的“数”与直观的“形”和谐结合。若教师能在备课时意识到这一点,届时抓住时机,具体形象地向刚入初中的学生及时渗透“数形结合”这一重要数学思想,这对学生以后的学习与发展不无碑益。另外,初中阶段的应用性问题中处处体现着构建模型、转化、数形结合等思想方法,通过对实际问题局部与整体关系的剖析,尝试把其转化为相应的数学问题,建立合理的数学模型,再借助直观图形和知识,尝试不同的解决策略,这个过程中本身

5、就蕴涵着丰富的数学思想和方法。教师只有把存在于教材中的数学思想与方法不断挖掘出来进行系统研究,结合初中不同年级不同学生的生理和心理特征,有计划有步骤地进行渗透与指导,引起学生对数学思想方法的必要重视,这对提高学生的数学思辨能力是相当必要的。2.要把握好渗透的契机。由于初中学生数学知识比较贫乏,抽象思维能力也较为薄弱,把数学思想、方法作为一门独立的课程还缺乏应有的基础。因而只能将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提

6、出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题。忽视或压缩这些过程,一味灌输知识的结论,就必然失去渗透数学思想、方法的一次次良机。如北师大版初中数学七年级上册课本《有理数》这一章,与原来部编教材相比,它少了一节──“有理数大小的比较”,而它的要求则贯穿在整章之中。在数轴教学之后,就引出了“在数轴上表示的两个数,右边的数总比左边的数大”,“正数都大于0,负数都小于0,正数大于一切负数”。而

7、两个负数比较大小的全过程单独地放在绝对值教学之后解决。在教学中应把握住这个逐级渗透的原则,及时向学生渗透数形结合的思想,学生易于接受。如果说结果性知识是数学的肉体,那么探究知识形成的过程和方法就是数学的灵魂。若教师上课时只注重对知识结果的传授,而轻视获取这些结果的过程与方法,那么教学效果是可想而知的。这样的教学,会使学生的学习一直停留在记忆与模仿阶段,而对学生能力的培养、智力的开发、品质的形成将无从谈起。事实上,这样教学的教师还不是少数。例如,有教师在教“完全平方公式”时,是这样进行的。先让学生通

8、过具体例子的运算,归纳出公式接着引导学生观察公式特征,然后让学生记忆,紧接着便进行大量的模仿练习。由于学生没有真正理解公式的结构性特征,在运算时不断出错便不足为奇,整堂课看似活跃,其实是低效的。若本节课教师能把数与形结合起来,先让学生用多项式乘法法则进行发现,再让学生通过实验、探究,用直观图形加以解释,从中研究出公式的结构性特征,这样学生亲历了知识的发生、发展过程,就能更好理解公式,并自然纳入自己的认知结构,应用也就自如了。事实上,把知识直接灌输给学生容易“干涸”,而握好契机,把获

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。