欢迎来到天天文库
浏览记录
ID:14236499
大小:333.00 KB
页数:13页
时间:2018-07-27
《弹性力学习题提示和答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《弹性力学简明教程》习题提示和参考答案第二章………………………………………………2第三章………………………………………………3第四章………………………………………………5第五章………………………………………………6第六章………………………………………………8第七章………………………………………………9第八章………………………………………………10第九章………………………………………………1213第二章习题的提示与答案2-1是2-2是2-3按习题2-1分析。2-4按习题2-2分析。2-5在的条件中,将出现2、3阶微量。当略去3阶微量后,得出的切
2、应力互等定理完全相同。2-6同上题。在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。其区别只是在3阶微量(即更高阶微量)上,可以略去不计。2-7应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。2-8在大边界上,应分别列出两个精确的边界条件;在小边界(即次要边界)上,按照圣维南原理可列出3个积分的近似边界条件来代替。2-9在小边界OA边上,对于图2-15(a)、(b)问题的三个积分边界条件相同,因此,这两个问题为静力等效。2-10参见本章小结。2-11参见本章小结。2-12参见本章小结。2-13
3、注意按应力求解时,在单连体中应力分量必须满足(1)平衡微分方程,(2)相容方程,(3)应力边界条件(假设)。2-14见教科书。2-15见教科书。2-16见教科书。2-17取它们均满足平衡微分方程,相容方程及x=0和的应力边界条件,因此,它们是该问题的正确解答。2-18见教科书。2-19提示:求出任一点的位移分量和,及转动量,再令,便可得出。13第三章习题的提示与答案3-1本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解:(1)校核相容条件是否满足,(2)求应力,(3)推求出每一边上的面力从而得出这个应力函数所能解决的问题。3-2用逆解法
4、求解。由于本题中l>>h,x=0,l属于次要边界(小边界),可将小边界上的面力化为主矢量和主矩表示。3-3见3-1例题。3-4本题也属于逆解法的问题。首先校核是否满足相容方程。再由求出应力后,并求对应的面力。本题的应力解答如习题3-10所示。应力对应的面力是:主要边界:所以在边界上无剪切面力作用。下边界无法向面力;上边界有向下的法向面力q。次要边界:x=0面上无剪切面力作用;但其主矢量和主矩在x=0面上均为零。因此,本题可解决如习题3-10所示的问题。3-5按半逆解法步骤求解。(1)可假设(2)可推出(3)代入相容方程可解出f、,得到(4)由
5、求应力。(5)主要边界x=0,b上的条件为次要边界y=0上,可应用圣维南原理,三个积分边界条件为读者也可以按或的假设进行计算。3-6本题已给出了应力函数,应首先校核相容方程是否满足,然后再求应力,并考察边界条件。在各有两个应精确满足的边界条件,即13而在次要边界y=0上,已满足,而的条件不可能精确满足(否则只有A=B=0,使本题无解),可用积分条件代替:3-7见例题2。3-8同样,在的边界上,应考虑应用一般的应力边界条件(2-15)。3-9本题也应先考虑对称性条件进行简化。3-10应力函数中的多项式超过四次幂时,为满足相容方程,系数之间必须满
6、足一定的条件。3-11见例题3。3-12见圣维南原理。3-13m个主要边界上,每边有两个精确的应力边界条件,如式(2-15)所示。n个次要边界上,每边可以用三个积分的条件代替。3-14见教科书。3-15严格地说,不成立。13第四章习题的提示和答案4-1参见§4-1,§4-2。4-2参见图4-3。4-3采用按位移求解的方法,可设代入几何方程得形变分量,然后再代入物理方程得出用位移表示的应力分量。将此应力公式代入平衡微分方程,其中第二式自然满足,而由第一式得出求的基本方程。4-4按应力求解的方法,是取应力为基本未知函数。在轴对称情况下,,只有为基
7、本未知函数,且它们仅为的函数。求解应力的基本方程是:(1)平衡微分方程(其中第二式自然满足),(2)相容方程。相容方程可以这样导出:从几何方程中消去位移,得再将形变通过物理方程用应力表示,得到用应力表示的相容方程。4-5参见§4-3。4-6参见§4-3。4-7参见§4-7。4-8见例题1。4-9见例题2。4-10见答案。4-11由应力求出位移,再考虑边界上的约束条件。4-12见提示。4-13内外半径的改变分别为两者之差为圆筒厚度的改变。4-14为位移边界条件。4-15求出两个主应力后,再应用单向应力场下圆孔的解答。4-16求出小圆孔附近的主应
8、力场后,再应用单向应力场下圆孔的解答。4-17求出小圆孔附近的主应力场后,再应用单向应力场下圆孔的解答。4-18见例题3。4-19见例题4。13第五章习题提示和答案
此文档下载收益归作者所有