欢迎来到天天文库
浏览记录
ID:14201472
大小:150.00 KB
页数:6页
时间:2018-07-26
《地图投影的基本问题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、3.地图投影的基本问题3.1地图投影的概念在数学中,投影(Project)的含义是指建立两个点集间一一对应的映射关系。同样,在地图学中,地图投影就是指建立地球表面上的点与投影平面上点之间的一一对应关系。地图投影的基本问题就是利用一定的数学法则把地球表面上的经纬线网表示到平面上。凡是地理信息系统就必然要考虑到地图投影,地图投影的使用保证了空间信息在地域上的联系和完整性,在各类地理信息系统的建立过程中,选择适当的地图投影系统是首先要考虑的问题。由于地球椭球体表面是曲面,而地图通常是要绘制在平面图纸上,因此制图时首先要把曲面展为平面,然而球面
2、是个不可展的曲面,即把它直接展为平面时,不可能不发生破裂或褶皱。若用这种具有破裂或褶皱的平面绘制地图,显然是不实际的,所以必须采用特殊的方法将曲面展开,使其成为没有破裂或褶皱的平面。3.2地图投影的变形3.2.1变形的种类地图投影的方法很多,用不同的投影方法得到的经纬线网形式不同。用地图投影的方法将球面展为平面,虽然可以保持图形的完整和连续,但它们与球面上的经纬线网形状并不完全相似。这表明投影之后,地图上的经纬线网发生了变形,因而根据地理坐标展绘在地图上的各种地面事物,也必然随之发生变形。这种变形使地面事物的几何特性(长度、方向、面积)
3、受到破坏。把地图上的经纬线网与地球仪上的经纬线网进行比较,可以发现变形表现在长度、面积和角度三个方面,分别用长度比、面积比的变化显示投影中长度变形和面积变形。如果长度变形或面积变形为零,则没有长度变形或没有面积变形。角度变形即某一角度投影后角值与它在地球表面上固有角值之差。1)长度变形即地图上的经纬线长度与地球仪上的经纬线长度特点并不完全相同,地图上的经纬线长度并非都是按照同一比例缩小的,这表明地图上具有长度变形。在地球仪上经纬线的长度具有下列特点:第一,纬线长度不等,其中赤道最长,纬度越高,纬线越短,极地的纬线长度为零;第二,在同一条
4、纬线上,经差相同的纬线弧长相等;第三,所有的经线长度都相等。长度变形的情况因投影而异。在同一投影上,长度变形不仅随地点而改变,在同一点上还因方向不同而不同。2)面积变形即由于地图上经纬线网格面积与地球仪经纬线网格面积的特点不同,在地图上经纬线网格面积不是按照同一比例缩小的,这表明地图上具有面积变形。在地球仪上经纬线网格的面积具有下列特点:第一,在同一纬度带内,经差相同的网络面积相等。第二,在同一经度带内,纬线越高,网络面积越小。然而地图上却并非完全如此。如在图4-9-a上,同一纬度带内,纬差相等的网格面积相等,这些面积不是按照同一比例缩
5、小的。纬度越高,面积比例越大。在图4-9-b上,同一纬度带内,经差相同的网格面积不等,这表明面积比例随经度的变化而变化了。由于地图上经纬线网格面积与地球仪上经纬线网格面积的特点不同,在地图上经纬线网格面积不是按照同一比例缩小的,这表明地图上具有面积变形。面积变形的情况因投影而异。在同一投影上,面积变形因地点的不同而不同。3)角度变形是指地图上两条所夹的角度不等于球面上相应的角度,如在图4-9-b和图4-9-c上,只有中央经线和各纬线相交成直角,其余的经线和纬线均不呈直角相交,而在地球仪上经线和纬线处处都呈直角相交,这表明地图上有了角度变
6、形。角度变形的情况因投影而异。在同一投影图上,角度变形因地点而变。地图投影的变形随地点的改变而改变,因此在一幅地图上,就很难笼统地说它有什么变形,变形有多大。图4-9:地图投影变形3.2.2变形椭圆变形椭圆是显示变形的几何图形,从图4-9可以看到,实地上同样大小的经纬线在投影面上变成形状和大小都不相同的图形(比较图4-9中三个格网)。实际中每种投影的变形各不相同,通过考察地球表面上一个微小的圆形(称为微分圆)在投影中的表象——变形椭圆的形状和大小,就可以反映出投影中变形的差异(图4-10)。图4-10:微分圆表示投影变形3.3地图投影的
7、分类地图投影的种类很多,为了学习和研究的方便,应对其进行分类。由于分类的标志不同,分类方法就不同。从使用地图的角度出发,需要了解下述几种分类。3.3.1按变形性质分类按变形性质地图投影可以分为三类:等角投影、等积投影和任意投影。1)等角投影定义为任何点上二微分线段组成的角度投影前后保持不变,亦即投影前后对应的微分面积保持图形相似,故可称为正形投影。投影面上某点的任意两方向线夹角与椭球面上相应两线段夹角相等,即角度变形为零。等角投影在一点上任意方向的长度比都相等,但在不同地点长度比是不同的,即不同地点上的变形椭圆大小不同。2)等积投影定义
8、为某一微分面积投影前后保持相等,亦即其面积比为1,即在投影平面上任意一块面积与椭球面上相应的面积相等,即面积变形等于零。3)等距投影在任意投影上,长度、面积和角度都有变形,它既不等角又不等积。但是在任意投影
此文档下载收益归作者所有