资源描述:
《(ebook - physics) quantum field theory - an introduction to string theory》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、Lecture1QuantumFieldTheories:AnintroductionThestringtheoryisaspecialcaseofaquantumfieldtheory(QFT).AnyQFTdealswithsmoothmaps ofRiemannianmanifolds,thedimensionofisthedimensionofthetheory.WealsohaveanactionfunctiondefinedonthesetMap
ofsmoothmaps.AQFTstudiesintegrals$%
2、
)(+*'&&-,(1.1)Map!#"(+*Here&-,standsforsomemeasureonthespaceofpaths,.isaparameter(usually%verysmall,Planckconstant)andMap/
021isaninsertionfunction.Thenumber65798/:shouldbeinterpretedastheprobabilityamplitudeofthecontribution ;<=ofthemap43totheinteg
3、ral.Theintegral>0?A@$ED&(1.2)Map4BCiscalledthepartitionfunctionofthetheory.InarelativisticQFT,thespacehasaLorentzianmetricofsignature#HIKJKJJ4/H
GF.Thefirstcoordinateisreservedfortime,therestareforspace.Inthiscase,theintegral(1.1)isreplacedwith>@%
G(;*J65798/:M&&
4、N,(1.3)Map437LLetusstartwithaPO-dimensionaltheory.Inthiscaseisapoint,so&isapoint<TU1QSRandisascalarfunction.TheMinkowskipartitionfunctionofthetheoryisanintegral>V@DJWB98/:Q(1.4)37LFollowingtheHarvardlecturesofC.Vafain1999,letusconsiderthefollowingexample:
5、12LECTURE1.QUANTUMFIELDTHEORIES:ANINTRODUCTIONExample1.1.RecalltheintegralexpressionfortheX-function:=[e[@@dcDDJXY'Z(1.5)^])_]f]Gg/_]4`Kba4`Kbaih
kjThisintegralisconvergentforReMZObutcanbemeromorphicallyextendedtothewholeplanewithpolesatZlRSmn.Wehaveo@@@tsuHdoB
poB
6、oqJcXY'ZZBXYMZXYXr@Bysubstitutingsvin(1.5),weobtaintheGaussintegral:]]Gw[uXY@@zyDJ(1.6)vv`8]g4x/aih[g`vAlthoughinthesubstitutionaboveisapositiverealnumber,onecanshowthatvvformula(1.6)makesense,asaRiemannintegral,foranycomplexwithRe
0{.OvWhenRe
EjthisiseasytoseeusingtheHankelr
7、epresentationofXY'ZasaOcontourintegralinthecomplexplane.Whenvisapureimaginary,itismoredelicateandwereferto[Kratzer-Franz],1.6.1.2.@
8、uTakingv,wecanuse@D~}D]~aihtodefineaprobabilitymeasureon1.ItiscalledtheGaussianmeasure.Letuscomputetheintegral[[>@@D}DJWBWWB9Qh)7LL6[[@o7
9、Here.Wehave[[>@uDJ9)FQiQbQg[pO