vector bundles and k-theory

vector bundles and k-theory

ID:14183567

大小:713.47 KB

页数:111页

时间:2018-07-26

vector bundles and k-theory_第1页
vector bundles and k-theory_第2页
vector bundles and k-theory_第3页
vector bundles and k-theory_第4页
vector bundles and k-theory_第5页
资源描述:

《vector bundles and k-theory》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Version2.0,January2003AllenHatcherCopyrightc2003byAllenHatcherPaperorelectroniccopiesfornoncommercialusemaybemadefreelywithoutexplicitpermissionfromtheauthor.Allotherrightsreserved.TableofContentsIntroduction..............................1Chapter1.Ve

2、ctorBundles....................41.1.BasicDefinitionsandConstructions............6Sections8.DirectSums10.InnerProducts12.TensorProducts14.AssociatedFiberBundles16.1.2.ClassifyingVectorBundles.................18PullbackBundles18.ClutchingFunctions22.The

3、UniversalBundle27.CellStructuresonGrassmannians31.Appendix:Paracompactness35.Chapter2.K–Theory.......................382.1.TheFunctorK(X).......................39RingStructure40.TheFundamentalProductTheorem41.2.2.BottPeriodicity......................

4、..51ExactSequences51.DeducingPeriodicityfromtheProductTheorem53.ExtendingtoaCohomologyTheory54.ElementaryApplications58.2.3.DivisionAlgebrasandParallelizableSpheres......59H–Spaces59.AdamsOperations62.TheSplittingPrinciple65.2.4.BottPeriodicityintheR

5、ealCase[notyetwritten]2.5.VectorFieldsonSpheres[notyetwritten]Chapter3.CharacteristicClasses..............733.1.Stiefel-WhitneyandChernClasses............74AxiomsandConstructions74.CohomologyofGrassmannians80.3.2.EulerandPontryaginClasses............

6、....84TheEulerClass87.PontryaginClasses90.Chapter4.TheJ–Homomorphism..............944.1.LowerBoundsonImJ....................95TheChernCharacter96.TheeInvariant98.ThomSpaces99.BernoulliDenominators102.4.2.UpperBoundsonImJ[notyetwritten]Bibliography...

7、..........................106PrefaceTopologicalK–theory,thefirstgeneralizedcohomologytheorytobestudiedthor-oughly,wasintroducedaround1960byAtiyahandHirzebruch,basedonthePeriodic-ityTheoremofBottprovedjustafewyearsearlier.InsomerespectsK–theoryismoreel

8、ementarythanclassicalhomologyandcohomology,anditisalsomorepowerfulforcertainpurposes.Someofthebest-knownapplicationsofalgebraictopologyinthetwentiethcentury,suchasthetheoremofBottandMilnorthattherearenodivisionalgebrasaftertheCayleyoctonions,orAdams’

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。