buliga m. sub-riemannian geometry and lie groups, part 1 (seminar notes, dma-epfl, 2001, math.mg_0210189, 2002)(80s)

buliga m. sub-riemannian geometry and lie groups, part 1 (seminar notes, dma-epfl, 2001, math.mg_0210189, 2002)(80s)

ID:14178770

大小:552.45 KB

页数:80页

时间:2018-07-26

buliga m. sub-riemannian geometry and lie groups, part 1 (seminar notes, dma-epfl, 2001, math.mg_0210189, 2002)(80s)_第1页
buliga m. sub-riemannian geometry and lie groups, part 1 (seminar notes, dma-epfl, 2001, math.mg_0210189, 2002)(80s)_第2页
buliga m. sub-riemannian geometry and lie groups, part 1 (seminar notes, dma-epfl, 2001, math.mg_0210189, 2002)(80s)_第3页
buliga m. sub-riemannian geometry and lie groups, part 1 (seminar notes, dma-epfl, 2001, math.mg_0210189, 2002)(80s)_第4页
buliga m. sub-riemannian geometry and lie groups, part 1 (seminar notes, dma-epfl, 2001, math.mg_0210189, 2002)(80s)_第5页
资源描述:

《buliga m. sub-riemannian geometry and lie groups, part 1 (seminar notes, dma-epfl, 2001, math.mg_0210189, 2002)(80s)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Sub-RiemanniangeometryandLiegroupsPartISeminarNotes,DMA-EPFL,2001M.BuligaInstitutBernoulliB^atimentMAEcolePolytechniqueFederaledeLausanneCH1015Lausanne,SwitzerlandMarius.Buliga@ep .chandInstituteofMathematics,RomanianAcademyP.O.BOX1-764,RO70700Bucuresti,Roman

2、iaMarius.Buliga@imar.roThisversion:October31,2002Keywords:sub-Riemanniangeometry,symplecticgeometry,CarnotgroupsarXiv:math.MG/0210189v331Oct200212IntroductionM.Gromov[13],pages85{86:"3.15.Proposition:Let(V;g)beaRiemannianmanifoldwithgcontinuous.Foreachv2Vthespace

3、s(V;v)Lipschitzconvergeas!1tothetangentspace(TvV;0)withitsEuclideanmetricgv.Proof+:StartwithaC1map(Rn;0)!(V;v)whosedi erentialisisometricat0.The-scalingsofthisprovidealmostisometriesbetweenlargeballsinRnandthoseinVfor!1.Remark:Infactwecande neRiemannianmanif

4、oldsaslocallycompactpathmetricspacesthatsatisfytheconclusionofProposition3.15."Ifso,Gromov'sremarkshouldapplytoanysub-Riemannianmanifold.Whythenisthesub-Riemanniancasesodi erentfromtheRiemannianone?Hereisalistoflegitimatequestions:Howcanonede nethemanifoldstructu

5、re?Whoarethetangentandcotangentbundles?Whatistheintrinsicdi erentialcalculus?WhyarethereabnormalgeodesicsiftheHamiltonianformalismonthecotangentbundlewerecomplete?IfthemanifoldisacompactLiegroupdoesthetangentbundlecarryanaturalgroupstructure?Whataredi erentialfor

6、ms,deRhamcochain,andthevariationalcomplex?Considerthegroupofsmoothvolumepreservingtransformations.Whydoesthisgrouphavemoreinvariantsthanthevolumeandwhatistheinterpretationoftheseinvariants?Thepurposeofthisworkingseminarwastoexploreasmanyaspossibleopenquestionsfro

7、mthelistabove.SpecialattentionhasbeenpayedtothecaseofaLiegroupwithaleftinvariantdistribution.Theseminar,organisedbytheauthorandTudorRatiuattheMathematicsDe-partment,EPFL,startedinNovember2001.Thepaperisbynomeansselfcontained.Foranyunprovedresultitisindicatedthep

8、lacewhereacompleteproofcanbefound.Thechoiceoftheproofsisratherpsychological:someofthemhaveageometricalormixedgeometric-analyticalmean-ing(liketheproofofHopf-Ri

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。