欢迎来到天天文库
浏览记录
ID:14175677
大小:59.50 KB
页数:3页
时间:2018-07-26
《三角形重心性质定理》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、三角形重心性质定理湖北省黄石市下陆中学宋毓彬1.三角形重心性质定理课本原题(人教八年级《数学》下册习题19.2第16题)在△ABC中,BD、CE是边AC、AB上的中线,BD与CE相交于O。BO与OD的长度有什么关系?BC边上的中线是否一定过点O?为什么?(提示:作BO中点M,CO的中点N。连接ED、EM、MN、ND)分析:三角形三条中线的交点是三角形的重心(第十九章课题学习《重心》)。这道习题要证明的结论是三角形重心的一个重要数学性质:三角形的重心将三角形的每条中线都分成1∶2两部分,其中重心到三角形某一顶点的距离是到该顶点对边中点距离的2倍。证法1:(根据课本上
2、的提示证明)取GA、GB中点M、N,连接MN、ND、DE、EM。(如图1)∵MN是△GAB的中位线,∴MN∥AB,MN=AB又ED是△ACB的中位线,∴DE∥AB,DE=AB∴DE∥MN,DE=MN,四边形MNDE是平行四边形∴GM=GD,又AM=MG,则AG=2GD同理可证:CG=2GF,BG=2GE点评:证法1是利用中点构造三角形中位线,从而得到平行四边形,再利用平行四边形性质得到中线上三个线段之间的相等关系。证法2:延长BE至F,使GF=GB,连接FC。∵G是BF的中点,D是BC的中点∴GD是△BFC的中位线,GD∥FC,GD=FC由GD∥FC,AE=CE,
3、易证△AEG≌△CEF∴AG=FC,即GD=AG点评:利用线段中点,还可以将与线段中点有关的线段倍长,构造全等,从而利用全等三角形的性质及三角形中位线的性质证明结论。证法3:取EC中点M,连DM,利用平行线分线段成比例及E是AC中点可证得相同的结论。(证明过程略)2.三角形重心性质定理的应用⑴求线段长例1如图3所示,在Rt△ABC中,∠A=30°,点D是斜边AB的中点,当G是Rt△ABC的重心,GE⊥AC于点E,若BC=6cm,则GE=cm。解:Rt△ABC中,∠A=30°,BC=6∴AB=BC=12,D是斜边AB的中点,∴CD=AB=6G是Rt△ABC的重心,∴
4、CG=CD=4由CD=AD,∠A=30°,∠GCE=30°Rt△GCE中,∠GCE=30°,CG=4,∴GE=CG=2(cm)⑵求面积例2在△ABC中,中线AD、BE相交于点O,若△BOD的面积等于5,求△ABC的面积。解:∵O是△ABC的重心,∴AO∶OD=2∶1∴S△AOB∶S△BOD=2∶1即S△AOB=2S△BOD=10∴S△ABD=S△AOB+S△BOD=10+5=15又AD是△ABC的中线S△ABC=2S△ABD=30。练习:1.如图5,△ABC中,AD是BC边上的中线,G是重心,如果AG=6,那么线段DG=。2.如图6,在△ABC中,G是重心,点D是
5、BC的中点,若△ABC的面积为6cm2,则△CGD的面积为。作者简介:宋毓彬,男,45岁,中学数学高级教师。在《中学数学教学参考》、《中学生数学》、《数理天地》、《数理化学习》、《数理化解题研究》、《语数外学习》、《中学课程辅导》、《数学周报》、《数学辅导报》、《数理报》、《小博士报》、《少年智力开发报·数学周刊》等报刊发表教学辅导类文章80多篇。主要致力于初中数学中考及解题方法、技巧等教学方面的研究。
此文档下载收益归作者所有