贵州大学机械工程材料及其成型技术基础复习资料

贵州大学机械工程材料及其成型技术基础复习资料

ID:14159013

大小:243.00 KB

页数:44页

时间:2018-07-26

贵州大学机械工程材料及其成型技术基础复习资料_第1页
贵州大学机械工程材料及其成型技术基础复习资料_第2页
贵州大学机械工程材料及其成型技术基础复习资料_第3页
贵州大学机械工程材料及其成型技术基础复习资料_第4页
贵州大学机械工程材料及其成型技术基础复习资料_第5页
资源描述:

《贵州大学机械工程材料及其成型技术基础复习资料》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、09级工程材料及成形技术基础课复习资料第1章零部件对材料性能的要求⒈零件在工作条件下所受力学负荷、热负荷和环境介质的作用。⒉力学负荷分静载荷(拉、压、弯、扭等)和动载荷(交变载荷与冲击载荷)。力学负荷使零件产生变形或断裂;热负荷使零件产生热应力,交变热应力引起材料的热疲劳,温度升高材料的强度硬度下降、塑性韧性升高,高温使材料产生氧化,温度超过0.3Tm时产生高温蠕变;环境介质使金属产生腐蚀和摩擦磨损、使高分子材料产生老化。⒊在弹性变形范围内,△L﹦PL0/EA0,E↑或A0↑→△L↓,即提高材料的弹性

2、模量E或增加零件的横截面积A0均能减少弹性变形。E主要取决于材料的本性,与显微组织关系较小,加工处理对它的影响很小。⒋强度—材料在外力作用下抵抗变形和断裂的能力。强度是应力值(MPa),应力极限。强度与组织的关系密切,用于零件的设计计算。常用的强度指标有屈服强度σs(适用于塑性好材料)、条件屈服强度σ0.2(适用于塑性差的材料)、抗拉强度σb等。⒌比刚度(比模量)—E/ρ;比强度—σb/ρ。比刚度、比强度大的材料能减轻零件的重量。屈强比—σs/σb,表征材料强度的利用程度和工作的安全程度,屈强比高材料

3、强度利用程度高但工作安全程度低。⒍塑性—材料在外力作用下产生永久变形而不断裂的能力。指标有延伸率δ(δ5)、断面收缩率ψ。同一材料的δ5值大于δ值(δ5>δ),因颈缩而ψ能较真实地反映材料的塑性好坏。塑性指标不能直接用于设计计算,塑性能降低应力集中,有利于压力加工,提高零件使用的可靠性。⒎冲击韧性—在一定温度下材料在冲击载荷作用下抵抗破坏的能力(αK),强度和塑性的综合指标。冲击韧性对材料的夹杂物等缺陷及晶粒大小十分敏感。一般把冲击韧性值低的材料称为脆性材料,冲击韧性值高的材料称为韧性材料。冲击韧性值

4、随温度的降低而降低。冷脆或韧脆转变温度Tk—冲击韧性值急剧下降时的温度。冲击韧性值不能直接用于零件的设计计算。⒏硬度—材料表面局部抵抗塑性变形或破裂的能力,是反映材料软硬程度的指标,是一种综合性指标。生产中常用的有洛氏硬度(HR)和布氏硬度(HB)。硬度试验简单方便且非破坏性,用于零件的设计和检验。硬度与材料的强度、塑性、韧性有关,对耐磨性和切削加工性有直接关系。从定义出发,强度高硬度高,塑性韧性就低。提高塑性韧性就要降低强度硬度。硬度对组织不敏感。⒐疲劳强度—当应力低于一定值时,试样在交变应力作用下

5、经无限周期循环而不破坏的应力值(σ﹣1)。⒑工程材料的分类分金属材料、有机高分子材料、陶瓷材料和复合材料。⒒各类材料特征⑴金属材料(金属键)的特征:良好的导电性、导热性、塑性、金属光泽、正的电阻温度系数。⑵有机高分子材料(主链间强共价键及大分子链间弱分子键)的特征:密度小,强度低(比强度高),E低,弹性较高,电绝缘性好,优良的减摩、耐磨和自润滑性能,优良的耐腐蚀性能,优良的透光性和隔热、隔音性,可加工性好。但不耐热(<300℃),可燃,易老化。⑶陶瓷材料(强离子键或共价键化合物)的特征:熔点高、硬度高

6、、化学稳定性高,极高的弹性模量,具有耐高温、耐腐蚀、耐磨损、绝缘、热膨胀系数小等优点。部分陶瓷具有特殊功能,作压电材料、磁性材料、生物陶瓷等功能材料。但抗压不抗拉、脆性大、不易加工成形。⑷复合材料的特征:性能优于组成材料,成分、性能可人为调整设计,材料合成与产品成形大多一次完成。第2章材料的内部结构、组织与性能⒈固态物质的晶体与非晶体:晶体具有固定熔点和各向异性(单晶体);非晶体无固定熔点和各向同性。晶体与非晶体在一定条件下可以互相转化。⒉金属的三种晶体结构:体心立方晶格,大多具有较高的熔点、硬度及强

7、度,塑性、韧性较低并具有冷脆性。面心立方晶格,大多具有较高的韧性并且无冷脆性。密排六方晶格,大多无冷脆性,但机械性能不突出。⒊晶体缺陷:⑴点缺陷—空位、间隙原子和置换原子,破坏晶格的规则性,引起晶格发生畸变,导致金属的强度、硬度、电阻等增加,塑性下降,是内部原子扩散和固溶强化的主要原因。⑵线缺陷—位错,金属在退火态时强度硬度最低,塑性高,在此基础上增加或减少位错密度,均使强度升高,位错密度升高是导致加工硬化的主要原因。⑶面缺陷—晶界和亚晶界,晶粒越细,晶界数量越多,晶界对塑性变形的抗力越大,晶粒的变形

8、越均匀,致使强度、硬度越高,塑性、韧性越好。在常温下晶粒越细力学性能越好,在高温下晶界稳定性差而晶粒越细高温性能越差。晶界增加是细晶强化的主要原因,位错密度增加亚晶细化是加工硬化的主要原因。⒋合金的相结构—固溶体和金属化合物。合金、组元、相、组织的概念。固溶体分间隙固溶体和置换固溶体,保持溶剂的晶体结构,间隙固溶体由过渡族金属元素与原子半径很小的非金属元素(H、B、C、N、O等)组成,为有限固溶体;置换固溶体可形成有限固溶体和无限固溶体。固溶强化—溶质原

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。