资源描述:
《计算机算法分析与设计》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、算法是指解决问题的一种方法或一个过程。算法是若干指令的有穷序列,满足性质:(1)输入:有外部提供的量作为算法的输入。(2)输出:算法产生至少一个量作为输出。(3)确定性:组成算法的每条指令是清晰,无歧义的。(4)有限性:算法中每条指令的执行次数是有限的,执行每条指令的时间也是有限的。程序是算法用某种程序设计语言的具体实现。程序可以不满足算法的性质(4)。分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。直接或间接地调用自身的算法称为递归算法。用函数自身给出定义的函数称
2、为递归函数。1.阶乘函数阶乘函数可递归地定义为:边界条件递归方程边界条件与递归方程是递归函数的二个要素2.Fibonacci数列无穷数列1,1,2,3,5,8,13,21,34,55,……,称为Fibonacci数列。它可以递归地定义为:当一个函数及它的一个变量是由函数自身定义时,称这个函数是双递归函数。Ackerman函数A(n,m)定义如下:Ackerman函数A(n,m)的自变量m的每一个值都定义了一个单变量函数:M=0时,A(n,0)=n+2M=1时,A(n,1)=A(A(n-1,1),0)=A(n-1,1)+
3、2,和A(1,1)=2故A(n,1)=2*nM=2时,A(n,2)=A(A(n-1,2),1)=2A(n-1,2),和A(1,2)=A(A(0,2),1)=A(1,1)=2,故A(n,2)=2^n。M=3时,类似的可以推出M=4时,A(n,4)的增长速度非常快,以至于没有适当的数学式子来表示这一函数。定义单变量的Ackerman函数A(n)为,A(n)=A(n,n)。定义其拟逆函数α(n)为:α(n)=min{k|A(k)≥n}。即α(n)是使n≤A(k)成立的最小的k值。α(n)在复杂度分析中常遇到。对于通常所见到的
4、正整数n,有α(n)≤4。但在理论上α(n)没有上界,随着n的增加,它以难以想象的慢速度趋向正无穷大。6排列问题设计一个递归算法生成n个元素{r1,r2,…,rn}的全排列。设R={r1,r2,…,rn}是要进行排列的n个元素,Ri=R-{ri}。集合X中元素的全排列记为perm(X)。(ri)perm(X)表示在全排列perm(X)的每一个排列前加上前缀得到的排列。R的全排列可归纳定义如下:当n=1时,perm(R)=(r),其中r是集合R中唯一的元素;当n>1时,perm(R)由(r1)perm(R1),(r2)p
5、erm(R2),…,(rn)perm(Rn)构成。7整数划分问题在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个数记作q(n,m)。可以建立q(n,m)的如下递归关系。(3)q(n,n)=1+q(n,n-1);正整数n的划分由n1=n的划分和n1≤n-1的划分组成。(4)q(n,m)=q(n,m-1)+q(n-m,m),n>m>1;正整数n的最大加数n1不大于m的划分由n1=m的划分和n1≤n-1的划分组成。8.Hanoi塔问题设a,b,c是3个塔座
6、。开始时,在塔座a上有一叠共n个圆盘,这些圆盘自下而上,由大到小地叠在一起。各圆盘从小到大编号为1,2,…,n,现要求将塔座a上的这一叠圆盘移到塔座b上,并仍按同样顺序叠置。在移动圆盘时应遵守以下移动规则:规则1:每次只能移动1个圆盘;规则2:任何时刻都不允许将较大的圆盘压在较小的圆盘之上;规则3:在满足移动规则1和2的前提下,可将圆盘移至a,b,c中任一塔座上。publicstaticvoidhanoi(intn,inta,intb,intc){if(n>0){hanoi(n-1,a,c,b);move(a,b);h
7、anoi(n-1,c,b,a);}}递归小结:优点:结构清晰,可读性强,而且容易用数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。缺点:递归算法的运行效率较低,无论是耗费的计算时间还是占用的存储空间都比非递归算法要多。分治法的适用条件分治法所能解决的问题一般具有以下几个特征:1.该问题的规模缩小到一定的程度就可以容易地解决;2.该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质3.利用该问题分解出的子问题的解可以合并为该问题的解;4.该问题所分解出的各个子问题是相互独立的,即子问
8、题之间不包含公共的子问题。这条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然也可用分治法,但一般用动态规划较好。人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。即将一个问题分成大小相等的k个子问题的处理方法是行之有效的。这种使子问题规模大致相等的