卷积递归深度学习在3d物体分类上的应用

卷积递归深度学习在3d物体分类上的应用

ID:14118078

大小:579.00 KB

页数:11页

时间:2018-07-26

卷积递归深度学习在3d物体分类上的应用_第1页
卷积递归深度学习在3d物体分类上的应用_第2页
卷积递归深度学习在3d物体分类上的应用_第3页
卷积递归深度学习在3d物体分类上的应用_第4页
卷积递归深度学习在3d物体分类上的应用_第5页
资源描述:

《卷积递归深度学习在3d物体分类上的应用》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、卷积递归深度学习在3D物体分类中的应用(Convolutional-RecursiveDeepLearningfor3DObjectClassification)RichardSocher,BrodyHuval,BharathBhat,ChristopherD.Manning,AndrewY.NgComputerScienceDepartment,StanfordUniversity,Stanford,CA94305,USA摘要3D传感技术的最新进展使人们有可能轻松地拍摄彩色和深度信息并存的图片,以提高物体识别

2、的图像。目前,大多数方法对于这个新的3D方式依赖于非常精心设计的特征。引入一个基于卷积和递归神经网络(CNN和RNN)组合的模型,用于特征学习和RGB-D图像分类。CNN层用于学习低水平的平移不变性的特征,然后作为多个固定树RNN的输入,以组成高阶特征。RNN可以被看作是结合卷积,并汇集到一个高效的、分层的操作。我们的主要结果是,甚至随机权重的RNN也组成强大的特征集。我们的模型在标准RGB-D对象集上获得了较好的艺术表现力,与其他可比的架构相比(如两层CNN),在训练和测试的阶段能更准确、快捷地得到结果。1.

3、简介物体识别是计算机视觉中最困难的问题之一,并对于实用化家庭环境下的机器人十分重要。新的传感技术(如Kinect)可以记录高品质RGB和深度图象(RGB-D)信息,并且现在已经结合标准视觉系统在家用机器人中运用了。深度模式为复杂问题的总体目标检测提供有用的额外信息,由于深度信息是不随亮度或颜色的变化而变化的,并提供了几何线索使得可以更好地从背景中分离。目前,大多数基于RGB-D图像的物体识别使用手工设计的特征集,如二维图像的SIFT[2],三维点云的旋转图片[3],或特定的颜色,形状和几何特征[4,5]。本文介

4、绍了用于对象识别的第一卷积递归深度学习模型,该模型可以借鉴原始RGB-D图像。相比近期其他3D特征学习方法[6,7],我们的做法具有更快速度、不需要额外的输入渠道(如表面法线)、艺术性地检测家用物品的特点。图图1列出了我们的做法。训练和测试代码在www.socher.org上可以找到。模型采用原始的RGB和深度图像进行分析,并首次分别从中提取特征。每一种模式首先输入一个卷积神经网络层(CNN,[8]),这个网络层提供了低层特征(如边缘)上有效的平移不变性,并且允许对象在一定程度上变形。汇集的滤波器相应随后传送给

5、一个递归神经网络(RNN,[9]),它可以学习成分特征和部分交互作用。通过绑定权重和非线性的多个层次,将RNN分层地投入到低维空间中。本文也探索了计算机视觉中新的深度学习架构。之前,RNN在自然语言处理和计算机视觉[9,10]方面的工作中,(i)为每组输入使用了不同的树型结构,(ii)采用具有一组权重的单一RNN,(iii)限制树状结构为二叉树,及(iv)通过结构的反向传播训练RNN[11,12]。在本文中,利用固定树结构、输入多个BNN和N叉树的方法,针对这四个方面拓展基于RNN结构的可能性。由此表明,由于C

6、NN层中固定的树结构不仅不会降低性能,而且提高了识别速度。类似于近期的工作[13,14]可见,随着特征数量的增加,RNN模型的性能也随之提高。每种模式分层组成的RNN特征相互连接,作为联合SOFTMAX分类器的输入图1:模型概述:一个从RGB和深度图像信息中提取低层特征的单一CNN层。这两种表示法都作为一组随机加权RNN的输入。若干个RNN(每个模式约100个)将特征递归映射到一个较低的维空间中,所有结果向量的串联形成最终的SOFTMAX分类器特征向量。最重要的是,经证实,随机权重的RNN也可以得到高质量的特征

7、。到目前为止,随机权重仅被证明可用于卷积神经网络[15,16]。由于监督训练减少了最终SOFTMAX分类器的权重的优化,可以很快地发掘大量的RNN结构。综上所述,得到了一个既能快速训练,又能在测试阶段高度并行的3D物体分类艺术系统。首先,本文简要介绍了过滤器权重及其卷积的无监督学习,由此得到低级的特征。其次,详细描述了如何用多个随机RNN用来获得整幅图像的高水平特征。最后,讨论了相关工作。实验中,定量比较了不同的模型,分析了模型的消融,描述得到Lai[2]等人的RGB-D数据集结果1.卷积递归神经网络本节描述了

8、新建立的CNN-RNN模型。首先,利用随机曲面的聚类使CNN过滤器进行无监督学习,然后将这些曲面转化成CNN层。将所得低级别、平移不变的特征传递给递归神经网络。由高阶特征组成的RNN可被用于图像分类。2.1CNN过滤器的无监督预训练根据Coates[13]等人描述的过程,学习在卷积中要使用的过滤器。首先,根据模式(RGB和深度)提取随机曲面到两个集合中,然后对每组曲面进行规范化和白化。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。