欢迎来到天天文库
浏览记录
ID:1394441
大小:53.00 KB
页数:9页
时间:2017-11-11
《高等数学论文大一上学期》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、合肥学院论文题目:高等数学基础概念——极限作者学号:1303032034作者姓名:专业班级:网络工程(2)班导师姓名:刘国旗目录摘要:极限概念是微积分中最基本的概念,极限思想是数学中极为重要的思想.一、极限的概念二、数列极限三、函数极限的通俗定义四、极限的运算规则六、极限求解的方法七、对极限理论理解概述 八、极限的发展历史高等数学的基础——极限一、极限的概念极限概念是由某些实际问题的精确破解而产生的,是用以描述变量在一定的变化过程中的终极状态的一个概念。比如物理中的瞬时速度的问题。我们知道速度可以用位移差与时间差的比值表示,若时间差趋于零,则此比值就是某时刻的
2、瞬时速度,这就产生了一个问题:趋于无限小的时间差与位移差求比值,就是0÷0,这有意义吗(这个意义是指“分析”意义,因为几何意义颇为直观,就是该点斜率)?这也迫使人们去为此开发出合乎理性的解释,极限的思想呼之欲出在数学领域中“极限”是用来描述变量在一定的变化过程中的极限状态的.“极限”经历了漫长的发展进程,今天的极限概念是数学家用了两千余年的时间不断完善才得到的.粗略地讲,在高等数学中,极限一直是一个重要内容,并以各种形式出现而贯穿全部内容。二、数列极限首先介绍刘徽的"割圆术",设有一半径为1的圆,在只知道直边形的面积计算方法的情况下,要计算其面积。为此,他先作圆
3、的内接正六边形,其面积记为A1,再作内接正十二边形,其面积记为A2,内接二十四边形的面积记为A3,如此将边数加倍,当n无限增大时,An无限接近于圆面积,他计算到3072=6*2的9次方边形,利用不等式An+10,总存在正整数N,使得当n>N时,
4、xn-a
5、<ε成立,那么称a是数列{xn}的极限。三、函数极限的通俗定义:1、设函数y=f(x)在(a,+∞)内有定义,如果当x→+∞时,函数f(x)
6、无限接近一个确定的常数A,则称A为当x趋于+∞时函数f(x)的极限。记作limf(x)=A,x→+∞。2、设函数y=f(x)在点a左右近旁都有定义,当x无限趋近a时(记作x→a),函数值无限接近一个确定的常数A,则称A为当x无限趋近a时函数f(x)的极限。记作limf(x)=A,x→a。函数的左右极限:1:如果当x从点x=x0的左侧(即x〈x0)无限趋近于x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的左极限,记作x→x0-limf(x)=a.2:如果当x从点x=x0右侧(即x>x0)无限趋近于点x0时,函数f(x)无限趋近于常数a,就说a
7、是函数f(x)在点x0处的右极限,记作x→x0+limf(x)=a.四、极限的运算规则(或称有关公式)lim(f(x)+g(x))=limf(x)+limg(x)lim(f(x)-g(x))=limf(x)-limg(x)lim(f(x)*g(x))=limf(x)*limg(x)lim(f(x)/g(x))=limf(x)/limg(x)(limg(x)不等于0)lim(f(x))^n=(limf(x))^n以上limf(x)limg(x)都存在时才成立lim(1+1/x)^x=ex→∞lim(1+1/x)^x=ex→0五.两个重要极限1、limsin(x)/
8、x=1,x→02、lim(1+1/x)^x=e,x→0(e≈2.7182818...,无理数)六、极限求解的方法1.迫敛性求解 求解的要点是,当极限不容易直接求出解的时候,就可以考虑将求解极限的变量做适当的放大或者缩小,使得放大、缩小所得的自变量易于求解极限,且二者的极限值相同,即原极限存在且等于此公共值。2.洛必达法则 ∞/∞ 型不定式极限常用的方式就是洛必达法则,有时还需要利用推广的洛必达法则进行求解。即将x→a换成x→a+0或x→a-0也可以适应洛必达法则。应用洛必达法则的时候应注意一下几点:要验证应用洛必达法则的条件应对极限进行分析确定其类型,然后才能
9、继续使用洛必达法则,主要符合这个条件就可以利用法则求解极限;另外,其他类型的不定式也可以求解极限。 3.极限内涵和判断准则 极限的内涵可以利用公式进行描述,即ε>0;
10、an-a
11、<ε,以此来描述数列{an}在变化的过程中所定义的是a近似的程度。即在{an}在变化的过程中an与a可以任意的接近,且可以要多接近就多接近,这也是极限的思路之一。上式表示的是an和a的绝对值之间的差值小于ε,且不是任何一项an都有这个性质,而是在某一个时刻后,即n>N的时候才能体现出来。用纯粹的数学方式表达:极限存在的辨识方法:极限存在左右极限存在且体现相等;符合夹逼定理;符合连续定
12、理(单调有界数列必有极限
此文档下载收益归作者所有