基于matlab的电力系统潮流计算毕业论文

基于matlab的电力系统潮流计算毕业论文

ID:1393382

大小:1.59 MB

页数:50页

时间:2017-11-11

基于matlab的电力系统潮流计算毕业论文_第1页
基于matlab的电力系统潮流计算毕业论文_第2页
基于matlab的电力系统潮流计算毕业论文_第3页
基于matlab的电力系统潮流计算毕业论文_第4页
基于matlab的电力系统潮流计算毕业论文_第5页
资源描述:

《基于matlab的电力系统潮流计算毕业论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、基于MATLAB的电力系统潮流计算毕业论文1引言1.1本课题的目的和意义电力系统潮流计算是对复杂电力系统正常和故障条件下稳态运行状态的计算。其目的是求取电力系统在给定运行方式下的节点电压和功率分布,用以检查系统各元件是否过负荷、各点电压是否满足要求、功率分布和分配是否合理以及功率损耗等,是电力系统计算分析中的一种最基本的计算[1]。潮流计算是电力系统的各种计算的基础,同时它又是研究电力系统的一项重要分析功能,是进行故障计算,继电保护鉴定,安全分析的工具。电力系统潮流计算是计算系统动态稳定和静态稳定的基础。在电力系统规划设计和现有电力系统运行方式的研究中,都需要

2、利用电力系统潮流计算来定量的比较供电方案或运行方式的合理性、可靠性和经济性[1]。对于正在规划的电力系统,通过潮流计算,可以为选择电网供电方案和电气设备提供依据。潮流计算还可以为继电保护和自动装置整定计算、电力系统故障计算和稳定计算等提供原始数据。潮流计算的目的在于:确定是电力系统的运行方式;检查系统中的各元件是否过压或过载;为电力系统继电保护的整定提供依据;为电力系统的稳定计算提供初值,为电力系统规划和经济运行提供分析的基础。因此,电力系统潮流计算是电力系统中一项最基本的计算,既具有一定的独立性,又是研究其他问题的基础[1]。1.2国内外发展现状利用电子计算

3、机进行潮流计算从20世纪50年代中期就已经开始。此后,潮流计算曾采用了各种不同的方法,这些方法的发展主要是围绕着对潮流计算的一些基本要求进行的。对潮流计算的要求可以归纳为下面几点:(1)算法的可靠性或收敛性(2)计算速度和内存占用量(3)计算的方便性和灵活性50电力系统潮流计算属于稳态分析范畴,不涉及系统元件的动态特性和过渡过程。因此其数学模型不包含微分方程,是一组高阶非线性方程。非线性代数方程组的解法离不开迭代,因此,潮流计算方法首先要求它是能可靠的收敛,并给出正确答案。随着电力系统规模的不断扩大,潮流问题的方程式阶数越来越高,目前已达到几千阶甚至上万阶,对

4、这样规模的方程式并不是采用任何数学方法都能保证给出正确答案的。这种情况促使电力系统的研究人员不断寻求新的更可靠的计算方法[2]。1.2.1高斯-赛德尔迭代法在用数字计算机求解电力系统潮流问题的开始阶段,人们普遍采用以节点导纳矩阵为基础的高斯-赛德尔迭代法(一下简称导纳法)。这个方法的原理比较简单,要求的数字计算机的内存量也比较小,适应当时的电子数字计算机制作水平和电力系统理论水平,于是电力系统计算人员转向以阻抗矩阵为主的逐次代入法(以下简称阻抗法)。20世纪60年代初,数字计算机已经发展到第二代,计算机的内存和计算速度发生了很大的飞跃,从而为阻抗法的采用创造了

5、条件。阻抗矩阵是满矩阵,阻抗法要求计算机储存表征系统接线和参数的阻抗矩阵。这就需要较大的内存量。而且阻抗法每迭代一次都要求顺次取阻抗矩阵中的每一个元素进行计算,因此,每次迭代的计算量很大[3]。阻抗法改善了电力系统潮流计算问题的收敛性,解决了导纳法无法解决的一些系统的潮流计算,在当时获得了广泛的应用,曾为我国电力系统设计、运行和研究作出了很大的贡献。但是,阻抗法的主要缺点就是占用计算机的内存很大,每次迭代的计算量很大。当系统不断扩大时,这些缺点就更加突出。为了克服阻抗法在内存和速度方面的缺点,后来发展了以阻抗矩阵为基础的分块阻抗法。这个方法把一个大系统分割为几

6、个小的地区系统,在计算机内只需存储各个地区系统的阻抗矩阵及它们之间的联络线的阻抗,这样不仅大幅度的节省了内存容量,同时也提高了计算速度[4]。1.2.2牛顿-拉夫逊法和P-Q分解法克服阻抗法缺点的另一途径是采用牛顿-拉夫逊法(以下简称牛拉法)。牛拉法是数学中求解非线性方程式的典型方法,有较好的收敛性。解决电力系统潮流计算问题是以导纳矩阵为基础的,因此,只要在迭代过程中尽可能保持方程式系数矩阵的稀疏性,就可以大大提高牛顿潮流程序的计算效率。自从20世纪60年代中期采用了最佳顺序消去法以后,牛拉法在收敛性、内存要求、计算速度方面都超过了阻抗法,成为直到目前仍被广泛

7、采用的方法。50在牛拉法的基础上,根据电力系统的特点,抓住主要矛盾,对纯数学的牛拉法进行了改造,得到了P-Q分解法。P-Q分解法在计算速度方面有显著的提高,迅速得到了推广[5]。牛拉法的特点是将非线性方程线性化。20世纪70年代后期,有人提出采用更精确的模型,即将泰勒级数的高阶项也包括进来,希望以此提高算法的性能,这便产生了保留非线性的潮流算法。另外,为了解决病态潮流计算,出现了将潮流计算表示为一个无约束非线性规划问题的模型,即非线性规划潮流算法[6]。近20多年来,潮流算法的研究仍然非常活跃,但是大多数研究都是围绕改进牛拉法和P-Q分解法进行的。此外,随着人

8、工智能理论的发展,遗传算法、人工神经网

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。