中考折叠分类例析

中考折叠分类例析

ID:13917167

大小:150.28 KB

页数:7页

时间:2018-07-24

中考折叠分类例析_第1页
中考折叠分类例析_第2页
中考折叠分类例析_第3页
中考折叠分类例析_第4页
中考折叠分类例析_第5页
资源描述:

《中考折叠分类例析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、中考折叠分类例析广东高州市分界中学 李 国折叠是实行新课标以来一种新型的问题,在中考试题中屡见不鲜,这类题目主要是考查学生的轴对称知识的掌握情况,下面通过几个例子进行分类解析。一、判别折叠后图形的形状。例1.(2011年福建龙岩)右图可以折叠成的几何体是()A.三棱柱B.四棱柱C.圆柱D.圆锥解析:考查学生对简单立体图形的空间想象的观念,也可以动手操作完成。难度较小,答案选A。二、求折叠后线段的长度。例2.(2011年四川绵阳)如图,将长8cm,宽4cm的矩形纸片ABCD折叠,使点A与C重合,则

2、折痕EF的长为_____cm.解:∵E点在A上,F在CD上,因为A、C点重合,EF是折痕,设他们交与O点,∴AO=CO,EF⊥AC,∵AB=8,BC=4,∴AC=,∵AE=CE,∴∠EAO=∠ECO,∴△OEC∽△BCA,∴OE:AB=OC:BC,∴OE=,∴EF=2OE=.故答案为:.点评:本题主要考查了勾股定理、相似三角形的判定和性质、轴对称的性质,解题的关键是做好辅助线找到相关的相似三角形.三、求折叠后图形的面积。例3.(2010年山东省青岛市)把一张矩形纸片(矩形ABCD)按如图方式折叠

3、,使顶点B和点D重合,折痕为EF.若AB=3cm,BC=5cm,则重叠部分△DEF的面积是cm2.解:设AE=A′E=x,则DE=5-x;在Rt△A′ED中,A′E=x,A′D=AB=3cm,ED=AD-AE=5-x;由勾股定理得:x2+9=(5-x)2,解得x=1.6;∴①S△DEF=S梯形A′DFE-S△A′DE=12(A′E+DF)×A′D-12A′E×A′D=12×(5-x+x)×3-12×x×3=12×5×3-12×1.6×3=5.1(cm2);点评:此题主要考查了折叠问题,得出AE=

4、A′E,根据勾股定理列出关于x的方程是解决问题的关键.四、求折叠后图形的周长。例4、(2009年衢州)在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为()A.9.5B.10.5C.11D.15.5解:∵△EDF是△EAF折叠以后形成的图形,∴△EDF≌△EAF,∴∠AEF=∠DEF,∵AD是BC边上的高,∴EF∥CB,又∠AEF=∠B,∴∠BDE=∠DEF,∴∠B=∠BDE,∴BE=DE,∴EF为

5、△ABC的中位线,∴△DEF的周长为△EAF的周长,即AE+EF+AF=(AB+BC+AC)=(12+10+9)=15.5.故选D.点评:本题考查了中位线定理,并涉及到图形的折叠,认识到图形折叠后所形成的图形△AEF与△DEF全等是解题的关键.五、求折叠后角的度数。例5、(2010年浙江省东阳市)如图,D是AB边上的中点,将沿过D的直线折叠,使点A落在BC上F处,若,则____度.解:∵D是AB边上的中点,∴AD=BD∵将沿过D的直线折叠,使点A落在BC上F处,∴AD=FD∴BD=FD,由∠B=

6、50°知∠BDF=80°。点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等。六、求折叠后线段的比值。例6.(2009年四川绵阳)如图,四边形ABCD是矩形,AB:AD=4:3,把矩形沿直线AC折叠,点B落在点E处,连接DE,则DE:AC=()A.1:3B.3:8C.8:27D.7:25解:从D,E处向AC作高DF,EH.设AB=4k,AD=3k,则AC=5k.由的面积=4k×3k=5k×EH,得

7、EH=;根据勾股定理得CH=.所以DE=5k-×2=.所以DE:AC=7:25.故选D.点评:本题的关键是利用折叠的特点及三角形面积的计算,求得EH,CH的长,从而求得DE的长,然后求比值。七、求折叠后的三角函数值。例7.(2011年福建莆田)如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为()A.B.C.D.解:∵四边形ABCD是矩形,∴∠A=∠B=∠D=90°,CD=AB=4,AD=BC=5,由题意得:∠

8、EFC=∠B=90°,CF=BC=5,∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE,∵在Rt△DCF中,CF=5,CD=4,∴DF=3,∴tan∠AFE=tan∠DCF==.故选C.点评:此题考查了折叠的性质,矩形的性质以及三角函数的性质.解此题的关键是数形结合思想与转化思想的应用.八、有关折叠的探究题。例8.(2009年山西省太原市)问题解决如图(1),将正方形纸片折叠,使点落在边上一点(不与点,重合),压平后得到折痕.当时,求的值.类比归纳在图(1)中,若则

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。