欢迎来到天天文库
浏览记录
ID:13878847
大小:1.01 MB
页数:51页
时间:2018-07-24
《变异系数 层次分析 各种权重求解法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、二、权重的确定方法在统计理论和实践中,权重是表明各个评价指标(或者评价项目)重要性的权数,表示各个评价指标在总体中所起的不同作用。权重有不同的种类,各种类别的权重有着不同的数学特点和经济含义,一般有以下几种权重。按照权重的表现形式的不同,可分为绝对数权重和相对数权重。相对数权重也称比重权数,能更加直观地反映权重在评价中的作用。按照权重的形成方式划分,可分为人工权重和自然权重。自然权重是由于变换统计资料的表现形式和统计指标的合成方式而得到的权重,也称为客观权重。人工权重是根据研究目的和评价指标的内涵状况,主观地分析、判断来确定的反映各个指标重要程度的权数,
2、也称为主观权重。按照权重形成的数量特点的不同划分,可分为定性赋权和定量赋权。如果在统计综合评价时,采取定性赋权和定量赋权的方法相结合,获得的效果更好。按照权重与待评价的各个指标之间相关程度划分,可分为独立权重和相关权重。独立权重是指评价指标的权重与该指标数值的大小无关,在综合评价中较多地使用独立权重,以此权重建立的综合评价模型称为“定权综合”模型。相关权重是指评价指标的权重与该指标的数值具有函数关系,例如,当某一评价的指标数值达到一定水平时,该指标的重要性相应的减弱;或者当某一评价指标的数值达到另一定水平时,该指标的重要性相应地增加。相关权重适用于评价指
3、标的重要性随着指标取值的不同而发生变化的条件下,基于相关权重建立的综合评价模型被称为“变权模型”。比如评估环境质量多采用“变权综合”模型。确定权重的方法较多,这里介绍统计平均法、变异系数法和层次分析法,这些也是实际工作种常用的方法。(一)统计平均法统计平均数法(Statisticalaveragemethod)是根据所选择的各位专家对各项评价指标所赋予的相对重要性系数分别求其算术平均值,计算出的平均数作为各项指标的权重。其基本步骤是:第一步,确定专家。一般选择本行业或本领域中既有实际工作经验、又有扎实的理论基础、并公平公正道德高尚的专家;第二步,专家初评
4、。将待定权数的指标提交给各位专家,并请专家在不受外界干扰的前提下独立的给出各项指标的权数值;第三步,回收专家意见。将各位专家的数据收回,并计算各项指标的权数均值和标准差;第四步,分别计算各项指标权重的平均数。如果第一轮的专家意见比较集中,并且均值的离差在控制的范围之内,即可以用均值确定指标权数。如果第一轮专家的意见比较分散,可以把第一轮的计算结果反馈给专家,并请他们重新给出自己的意见,直至各项指标的权重与其均值的离差不超过预先给定的标准为止,即达到各位专家的意见基本一致,才能将各项指标的权数的均值作为相应指标的权数。(二)变异系数法变异系数法(Coeff
5、icientofvariationmethod)是直接利用各项指标所包含的信息,通过计算得到指标的权重。是一种客观赋权的方法。此方法的基本做法是:在评价指标体系中,指标取值差异越大的指标,也就是越难以实现的指标,这样的指标更能反映被评价单位的差距。例如,在评价各个国家的经济发展状况时,选择人均国民生产总值(人均GNP)作为评价的标准指标之一,是因为人均GNP不仅能反映各个国家的经济发展水平,还能反映一个国家的现代化程度。如果各个国家的人均GNP没有多大的差别,则这个指标用来衡量现代化程度、经济发展水平就失去了意义。由于评价指标体系中的各项指标的量纲不同,
6、不宜直接比较其差别程度。为了消除各项评价指标的量纲不同的影响,需要用各项指标的变异系数来衡量各项指标取值的差异程度。各项指标的变异系数公式如下:(14—1)式中:是第项指标的变异系数、也称为标准差系数;是第项指标的标准差;是第项指标的平均数。各项指标的权重为:(14—2)例如,英国社会学家英克尔斯提出了在综合评价一个国家或地区的现代化程度时,其各项指标的权重的确定方法就是采用的变异系数法。【例14.2】试利用变异系数法综合评价一个国家现代化程度时的指标体系中的各项指标的权重。数据资料是选取某一年的数据,包括中国在内的中等收入水平以上的近40个国家的10项
7、指标作为评价现代化程度的指标体系,计算这些国家的变异系数,反映出各个国家在这些指标上的差距,并作为确定各项指标权重的依据。其标准差、平均数数据及其计算出的变异系数等见表14-3。表14-3现代化水平评价指标的权重指人均总标GNP(美元)农业占GDP的比重(%)第三产业占GDP比重(%)非农业劳动力比重(%)城市人口比重(%)人口自然增长率(%)平均预期寿命(岁)成人识字率(%)大学生占适龄人口比重(%)每千人拥有医生(人)和平均数11938.49.35254.860.82669.7920.721472.63293.3436.5562.446—标准差796
8、6.277.31612.940.17019.3390.83195.3759.05
此文档下载收益归作者所有