欢迎来到天天文库
浏览记录
ID:13867034
大小:89.52 KB
页数:8页
时间:2018-07-24
《超级电容储能模块设计》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、超级电容储能模块设计电能是当代社会不可或缺的重要资源,而储能设备的优劣直接影响着电力设备的充分应用。近年来随着便携式设备、不间断电源系统以及电动车的大量开发使用,蓄电池的使用量日益增加。可充电蓄电池,特别是铅酸蓄电池凭借其价格低廉、性能稳定、没有记忆功能等卓越特点普遍应用在各行各业。但蓄电池受其先天条件的制约,存在着循环寿命差、高低温性能差、充放电过程敏感、深度放电性能容量恢复困难、环境污染的问题,传统蓄电池已经越来越无法满足人们对储能系统的要求。超级电容是近几年才批量生产的一种新型电力储能器件,也称为电化学电容。它既具有静电电容器的高放电功率优势又像电池一样具有较大
2、电荷储存能力[1,2],单体的容量目前已经做到万法拉级。同时,超级电容还具有循环寿命长、功率密度大、充放电速度快、高温性能好、容量配置灵活、环境友好免维护等优点。自1957年美国人Becker发表第一篇关于超级电容的专利以来,超级电容的应用范围越来越广:在直流电气化铁路供电、UPS等应用方向进行研究,目前已开发出了50kVA和80kVA的实验样机[3];利用超级电容器配合蓄电池作为辅助动力源,促进汽车的能源回收,提高能源利用率[4],并出现了超级电容混合动力汽车[5]。随着超级电容性能的提升,它将有望在小功耗电子设备、新能源利用以及其他一些领域中部分取代传统蓄电池。本
3、文介绍了一种基于超级电容设计的用以替代12V蓄电池的超级电容模块,通过计算分析得出模块的组合结构、最佳充电电流范围、充电时间以及总的输出能量。该模块具有寿命长,不造成污染,功率和能量密度大等优点,具有很好的开发应用前景。一、 超级电容储能模块的设计由于超级电容的放电不完全,存在最低工作电压,所以单体超级电容的能量为,其中C为超级电容的单体电容量,为单体超级电容充电完成的电压值。超级电容器单体储存能量有限且耐压不高,需要通过相应的串连并联方法扩容,扩大超级电容的使用范围。而通过相应的DC-DC芯片可以提高超级电容的最低工作电压。假设超级电容以m个串联,n组并联的方式构
4、成。则每个超级电容的能量输出为 (1)其中,为芯片的最低启动电压。故超级电容阵列的能量总输出为,为超级电容的总能量。本文采用SU2400P-0027V-1RA超级电容,具有较高的功率比、能量比和较低的等效串联电阻(ESR(DC)=1mΩ)。为了构成替代12V蓄电池的超级电容模块,我们采用8个2400F/2.7V的电容构成模块,采用4个超级电容单体串联,两组并联的方式构成,如图1所示。超级电容器的特性,如功率密度、能量密度、储能效率、循环寿命等,取决于器件内部的材料、结构和工艺,器件并联或串联不会影响其特性[6]。其
5、等效串联内阻 (2)其中,为串联器件数,为并联支路数。超级电容器组的等效电容为: (3)故超级电容阵列的等效内阻和等效电容为,将超级电容模块的容量与蓄电池的容量参数的比较,由 (4)得到对应于蓄电池安时数的超级电容阵列容量为,其中Umin为相应的芯片的最低启动电压。三、相关电路的设计电路的总体构图如图3所示,它包括充电电路、超级电容储能模块和工作放电电路等部分组成,其设计流程图如图2所示。图2电路设计流程3.1充
6、电电路把超级电容等效为一个理想电容器C;与一个较小阻值的电阻(等效串联阻抗,)相串联,同时与一个较大阻值的电阻(等效并联阻抗,)相并联的结构。如图3所示[7]。超级电容可以进行大电流充电,但是由于串联等效电阻的存在,采用过大电流充电时,超级电容的充电效率会有一定程度的降低,因此需要考虑充电电流对超级电容的工作效率的影响。采用恒流充电时,如图3所示,Is为恒流充电电流值,则 (5)u(t)表示超级电容器端电压,表示超级电容器内储存电荷所决定的电容电压 (6)其中=0V,为超级电容的初电压,表示在等效串联电阻Res上
7、的压降。充电过程中消耗的总电能为 (7)超级电容器存储的能量为 (8)由能量守恒公式,等式成立,理想情况下,超级电容器的恒流充电效率表示为: (9)采用matlab对超级电容的充电电流和工作效率进行模拟,并采用origin软件对结果进行处理,结果如下: 图4充电电流与充电效率η的关系由图4可知,超级电容单体在充电电流为3A~8A时保持比较高的充电效率,之后,随着电流强度的增大,损耗在相应电阻上的功率也
此文档下载收益归作者所有