高中物理竞赛教程(超详细) 第九讲 动量 角动量和能量

高中物理竞赛教程(超详细) 第九讲 动量 角动量和能量

ID:13806962

大小:512.00 KB

页数:21页

时间:2018-07-24

高中物理竞赛教程(超详细) 第九讲 动量 角动量和能量_第1页
高中物理竞赛教程(超详细) 第九讲 动量 角动量和能量_第2页
高中物理竞赛教程(超详细) 第九讲 动量 角动量和能量_第3页
高中物理竞赛教程(超详细) 第九讲 动量 角动量和能量_第4页
高中物理竞赛教程(超详细) 第九讲 动量 角动量和能量_第5页
资源描述:

《高中物理竞赛教程(超详细) 第九讲 动量 角动量和能量》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、高中物理竞赛热学教程第四讲动量 角动量和能量 第四讲动量角动量和能量§4.1动量与冲量动量定理4.1.1.动量在牛顿定律建立以前,人们为了量度物体作机械运动的“运动量”,引入了动量的概念。当时在研究碰撞和打击问题时认识到:物体的质量和速度越大,其“运动量”就越大。物体的质量和速度的乘积mv遵从一定的规律,例如,在两物体碰撞过程中,它们的改变必然是数值相等、方向相反。在这些事实基础上,人们就引用mv来量度物体的“运动量”,称之为动量。4.1.2.冲量要使原来静止的物体获得某一速度,可以用较大的力作用较短的时间或用较小

2、的力作用较长的时间,只要力F和力作用的时间的乘积相同,所产生的改变这个物体的速度效果就一样,在物理学中把F叫做冲量。4.1.3.质点动量定理由牛顿定律,容易得出它们的联系:对单个物体:即冲量等于动量的增量,这就是质点动量定理。在应用动量定理时要注意它是矢量式,速度的变化前后的方向可以在一条直线上,也可以不在一条直线上,当不在一直线上时,可将矢量投影到某方向上,分量式为:对于多个物体组成的物体系,按照力的作用者划分成内力和外力。对各个质点用动量定理:第1个外+内=第2个外+内=第n个外+内=由牛顿第三定律:内+内+…

3、…+内=0因此得到:外+外+……+外=(++……+)-(++……)即:质点系所有外力的冲量和等于物体系总动量的增量。§4,2角动量角动量守恒定律动量对空间某点或某轴线的矩,叫动量矩,也叫角动量。它的求法跟力矩完全一样,只要把力F换成动量P即可,故B点上的动量P对原点O的动量矩J为OB()以下介绍两个定理:高中物理竞赛热学教程第四讲动量 角动量和能量 (1).角动量定理:质点对某点或某轴线的动量矩对时间的微商,等于作用在该质点上的力对比同点或同轴的力矩,即(为力矩)。(2).角动量守恒定律如果质点不受外力作用,或虽受

4、外力作用,但诸外力对某点的合力矩为零,则对该点来讲,质点的动量矩J为一恒矢量,这个关系叫做角动量守恒定律即r×F=0,则J=r×mv=r×P=恒矢量 §4.3动量守恒定律动量守恒定律是人们在长期实践的基础上建立的,首先在碰撞问题的研究中发现了它,随着实践范围的扩大,逐步认识到它具有普遍意义,对于相互作用的系统,在合外力为零的情况下,由牛顿第二定律和牛顿第三定律可得出物体的总动量保持不变。即:++……+=……上式就是动量守恒定律的数学表达式。应用动量守恒定律应注意以下几点:(1)动量是矢量,相互作用的物体组成的系统的

5、总动量是指组成物体系的所有物体的动量的矢量和,而不是代数和,在具体计算时,经常采用正交分解法,写出动量守恒定律的分量方程,这样可把矢量运算转化为代数运算,(2)在合外力为零时,尽管系统的总动量恒定不变,但组成系统的各个物体的动量却可能不断变化,系统的内力只能改变系统内物体的动量,却不能改变系统的总动量。在合外力不为零时,系统的总动量就要发生改变,但在垂直于合外力方向上系统的动量应保持不变,即合外力的分量在某一方向上为零,则系统在该方向上动量分量守恒。(3)动量守恒定律成立的条件是合外力为零,但在处理实际问题时,系统

6、受到的合外力不为零,若内力远大于外力时,我们仍可以把它当作合外力为零进行处理,动量守恒定律成立。如遇到碰撞、爆炸等时间极短的问题时,可忽略外力的冲量,系统动量近似认为守恒。(4)动量守恒定律是由牛顿定律导出的,牛顿定律对于分子、原子等微观粒子一般不适用,而动量守恒定律却仍适用。因此,动量守恒定律是一条基本规律,它比牛顿定律具有更大的普遍性。动量守恒定律的推广由于一个质点系在不受外力的作用时,它的总动量是守恒的,所以一个质点系的内力不能改变它质心的运动状态,这个讨论包含了三层含意:高中物理竞赛热学教程第四讲动量 角动

7、量和能量 图4-3-2图4-3-1(1)如果一个质点系的质心原来是不动的,那么在无外力作用的条件下,它的质心始终不动,即位置不变。(2)如果一个质点系的质心原来是运动的,那么在无外力作用的条件下,这个质点系的质心将以原来的速度做匀速直线运动。(3)如果一个质点系的质心在某一个外力作用下作某种运动,那么内力不能改变质心的这种运动。比如某一物体原来做抛体运动,如果突然炸成两块,那么这两块物体的质心仍然继续做原来的抛体运动。如果一个质量为的半圆形槽A原来静止在水平面上,原槽半径为R。将一个质量为的滑块B由静止释放(图4-

8、3-1),若不计一切摩擦,问A的最大位移为多少?由于A做的是较复杂的变加速运动,因此很难用牛顿定律来解。由水平方向动量守恒和机械能守恒,可知B一定能到达槽A右边的最高端,而且这一瞬间A、B相对静止。因为A、B组成的体系原来在水平方向的动量为零,所以它的质心位置应该不变,初始状态A、B的质心距离圆槽最低点的水平距离为:。所以B滑到槽A的右边最高端时,A的位移为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。