欢迎来到天天文库
浏览记录
ID:1377907
大小:95.15 KB
页数:7页
时间:2017-11-11
《评价数据离散程度的指标》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、标准差标准差(StandardDeviation),也称均方差(meansquareerror),是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。标准差(StandardDeviation),在概率统计中最常使用作为统计分布程度(statisticaldispersion)上的测量。标准差定义为方差的算术平方根,反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:为
2、非负数值,与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。标准计算公式假设有一组数值X1,X2,X3,......Xn(皆为实数),其平均值为μ,公式如图1.图1标准差也被称为标准偏差,或者实验标准差,公式如图2。图2简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。例如,两组数的集合{0,5,9,14}和{5,6,8,9}其平均值都是7
3、,但第二个集合具有较小的标准差。标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差
4、数值越细,代表回报较为稳定,风险亦较小。例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.078分,B组的标准差为2.16分(此数据是在R统计软件中运行获得),说明A组学生之间的差距要比B组学生之间的差距大得多。如是总体,标准差公式根号内N=n,如是样本,标准差公式根号内N=(n-1),因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)。公式意义所有
5、数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一,即变异数),再把所得值开根号,所得之数就是这组数据的标准差。深蓝区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之68%。根据正态分布,两个标准差之内(深蓝,蓝)的比率合起来为95%。根据正态分布,三个标准差之内(深蓝,蓝,浅蓝)的比率合起来为99%。正态分布标准差的意义 标准计算公式假设有一组数值(皆为实数),其平均值为:此组数值的标准差为: 样本标准差在真实世界中,除非在某些特殊情况下,找到一
6、个总体的真实的标准差是不现实的。大多数情况下,总体标准差是通过随机抽取一定量的样本并计算样本标准差估计的。从一大组数值当中取出一样本数值组合,常定义其样本标准差:样本方差s是对总体方差σ的无偏估计。s中分母为n-1是因为样本的自由度为n-1,这是由于存在约束条件。这里示范如何计算一组数的标准差。例如一群儿童年龄的数值为{5,6,8,9}: 第一步,计算平均值 第二步,计算标准差σ=σ=σ=σ=此为标准差离散度标准差是反应一组数据离散程度最常用的一种量化形式,是表示精确度的重要指标。说起标准差
7、首先得搞清楚它出现的目的。我们使用方法去检测它,但检测方法总是有误差的,所以检测值并不是其真实值。检测值与真实值之间的差距就是评价检测方法最有决定性的指标。但是真实值是多少,不得而知。因此怎样量化检测方法的准确性就成了难题。这也是临床工作质控的目的:保证每批实验结果的准确可靠。虽然样本的真实值是不可能知道的,但是每个样本总是会有一个真实值的,不管它究竟是多少。可以想象,一个好的检测方法,其检测值应该很紧密的分散在真实值周围。如果不紧密,与真实值的距离就会大,准确性当然也就不好了,不可能想象离散度
8、大的方法,会测出准确的结果。因此,离散度是评价方法的好坏的最重要也是最基本的指标。一组数据怎样去评价和量化它的离散度呢?人们使用了很多种方法:1.极差最直接也是最简单的方法,即最大值-最小值(也就是极差)来评价一组数据的离散度。这一方法在日常生活中最为常见,比如比赛中去掉最高最低分就是极差的具体应用。2.离均差的平方和由于误差的不可控性,因此只由两个数据来评判一组数据是不科学的。所以人们在要求更高的领域不使用极差来评判。其实,离散度就是数据偏离平均值的程度。因此将数据与均值之差(我们叫它离均差)
此文档下载收益归作者所有