欢迎来到天天文库
浏览记录
ID:13760785
大小:34.50 KB
页数:3页
时间:2018-07-24
《《相似三角形应用举例》教案[1]》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、《相似三角形应用举例》教案岫岩雅河中学姚桂芹《相似三角形应用举例》教案一、教学目标1.进一步巩固相似三角形的知识.2.能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题.3.通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力.二、重点、难点1.重点:运用三角形相似的知识计算不能直接测量物体的长度和高度.2.难点:灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题).三、例题的意图相似三角
2、形的应用主要有如下两个方面:(1)测高(不能直接使用皮尺或刻度尺量的);(2)测距(不能直接测量的两点间的距离).本节课通过教材P49的例3——P50的例5(教材P49例3——是测量金字塔高度问题;P50例4¬——是测量河宽问题;P50例5——是盲区问题)的讲解,使学生掌握测高和测距的方法.知道在实际测量物体的高度、宽度时,关键是要构造和实物所在三角形相似的三角形,而且要能测量已知三角形的各条线段的长,运用相似三角形的性质列出比例式求解.讲课时,可以让学生思考用不同的方法解这几个实际问题,以提高从实际生活中发现数学问题、运
3、用所学知识解决实际问题的能力.应让学生多见些不同类型的有关相似三角形的应用问题,便于学生理解:世上许多实际问题都可以用数学问题来解决,而本节的应用实质是:运用相似三角形相似比的相关知识解决问题,并让学生掌握运用这方面的知识解决在自己生活中的一些实际问题的计算方法.其中P50的例5出现了几个概念,在讲此例题时可以给学生介绍.(1)视点:观察者眼睛的位置称为视点;(2)视线:由视点出发的线称为视线;(3)仰角:在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;(4)盲区:人眼看不到的地方称为盲区.四、课堂引入问:世界现存规
4、模最大的金字塔位于哪个国家,叫什么金字塔?胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一”.塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米.据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀,所以高度有所降低.在古希腊,有一位伟大的科学家叫泰勒斯.一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!”,这在当时条件下是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是怎样测量大金字塔的高
5、度的吗?五、例题讲解例1(教材P49例3——测量金字塔高度问题)分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度.解:略(见教材P49)问:你还可以用什么方法来测量金字塔的高度?(如用身高等)解法二:用镜面反射(如图,点A是个小镜子,根据光的反射定律:由入射角等于反射角构造相似三角形).(解法略)例2(教材P50例4¬——测量河宽问题)分析:设河宽PQ长为xm,由于此种测量方法构造了三角形中的平行截
6、线,故可得到相似三角形,因此有,即.再解x的方程可求出河宽.解:略(见教材P50)问:你还可以用什么方法来测量河的宽度?解法二:如图构造相似三角形(解法略).例3(教材P50例5——盲区问题)分析:略(见教材P50)解:略(见教材P51)六、课堂练习1.在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?2.小明要测量一座古塔的高度,从距他2米的一小块积水处C看到塔顶的倒影,已知小明的眼部离地面的高度DE是1.5米,塔底中心B到积水处
7、C的距离是40米.求塔高?七、课后练习1.教材P51.练习1和练习2.2.如图,小明在打网球时,使球恰好能打过网,而且落在离网5米的位置上,求球拍击球的高度h.(设网球是直线运动)3.小明想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图,他先测得留在墙上的影高1.2m,又测得地面部分的影长2.7m,他求得的树高是多少?
此文档下载收益归作者所有