资源描述:
《2017-2018学年高中数学专题08平面向量的基本定理同步单元双基双测卷b卷新人教a版必修4》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2017-2018学年人教A版高中数学必修四同步单元测试卷AB卷专题八平面向量的基本定理(B卷)(测试时间:120分钟满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【2018届河南省长葛一高高三上学期开学】如图,在中,为线段的中点,依次为线段从上至下的3个四等分点,若,则()A.点与图中的点重合B.点与图中的点重合C.点与图中的点重合D.点与图中的点重合【答案】C2.已知向量,若与共线,则()A.B.C.-D.【答案】C【解析】,所以与
2、不共线,那么当与共线时,,即得,故选C.3.已知点,,则与向量同方向的单位向量为()122017-2018学年人教A版高中数学必修四同步单元测试卷AB卷A.B.C.D.【答案】A【解析】试题分析:,所以与同方向的意念向量为,故选A.4已知=(-2,1),=(,),且//,则=()A.1B.2C.3D.5【答案】A【解析】因为//,直接由共线定理知,,即,故应选A.5.已知向量,,且∥,则()A.3B.C.D.【答案】B【解析】.6.已知向量p=(2,-3),q=(x,6),且p∥q,则
3、p+q
4、的值为( )A. B
5、.C.5D.13【答案】B【解析】由题意得2×6+3x=0⇒x=-4⇒
6、p+q
7、=
8、(2,-3)+(-4,6)
9、=
10、(-2,3)
11、=.7.【2018届河北省石家庄二中高三八月模拟】已知点是所在平面内的一点,且,设,则()A.6B.C.D.【答案】D【解析】由题意作图:C是线段BD的中点.122017-2018学年人教A版高中数学必修四同步单元测试卷AB卷.又,由平面向量基本定理可知:∴.故选:D.8.如图,正方形中,是的中点,若,则()A.B.C.D.2【答案】B9.已知平面向量=(2,-1),=(1,1),=(-5,1),若∥,则
12、实数k的值为( )A.2B.C.D.【答案】B【解析】∵=,=,∴=,又122017-2018学年人教A版高中数学必修四同步单元测试卷AB卷=,且∥,∴,解得:=.故选B.10.已知△ABC的顶点分别为A(2,1),B(3,2),C(-3,-1),BC边上的高为AD,则点D的坐标为( )A.(-,)B.(,-)C.(,)D.(-,-)【答案】C11.【2018届江西省六校高三上学期第五次联考】在等腰直角中,在边上且满足:,若,则的值为()A.B.C.D.【答案】C【解析】,∴A,B,D三点共线,∴由题意建立如图所示坐标系,设AC
13、=BC=1,则C(0,0),A(1,0),B(0,1),直线AB的方程为x+y=1,直线CD的方程为,故联立解得,,故,故,故,故,故.本题选择C选项.122017-2018学年人教A版高中数学必修四同步单元测试卷AB卷12.如图,在△中,,是上的一点,若,则实数的值为()A.B.C.D.【答案】C第II卷(共90分)二、填空题(本大题共4小题,每小题5分,共20分。把答案填在题中的横线上。)122017-2018学年人教A版高中数学必修四同步单元测试卷AB卷13.【2017届西藏自治区拉萨中学高三第八次月考】已知,,且,则实数__
14、________.【答案】-6【解析】解析:因,故,,由题设可得,解之得,应填答案.14.已知点,线段的中点的坐标为.若向量与向量共线,则_____________.【答案】【解析】由题设条件,得,所以.因为向量与向量共线,所以,所以.15.【2018届河南省中原名校高三第三次考评】向量,,在正方形网格中的位置如图所示,若(,),则__________.【答案】4【解析】以向量的公共点为坐标原点,建立如图直角坐标系可得,解之得122017-2018学年人教A版高中数学必修四同步单元测试卷AB卷因此,16.已知梯形中,是边上一点,且.
15、当在边上运动时,的最大值是________________.【答案】【解析】设,则,故.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题10分)在直角坐标系中,已知点,点在三边围成的区域(含边界)上,且.(1)若,求;(2)用表示,并求的最大值.【答案】(1);(2),1.【解析】(1),又(2)122017-2018学年人教A版高中数学必修四同步单元测试卷AB卷即两式相减得:令,由图可知,当直线过点时,取得最大值1,故的最大值为1.18.(本小题12分)已知向量,且与不共线.(1)设,
16、证明:四边形为菱形;(2)当两个向量与的模相等时,求角.【答案】(1)证明见解析;(2)或.试题解析:(1)证明:∵,∴四边形为平行四边形,又,∴四边形为菱形.122017-2018学年人教A版高中数学必修四同步单元测试卷AB卷(2)