icp仪器及分析仪器详细分类介绍

icp仪器及分析仪器详细分类介绍

ID:13600535

大小:32.00 KB

页数:8页

时间:2018-07-23

icp仪器及分析仪器详细分类介绍_第1页
icp仪器及分析仪器详细分类介绍_第2页
icp仪器及分析仪器详细分类介绍_第3页
icp仪器及分析仪器详细分类介绍_第4页
icp仪器及分析仪器详细分类介绍_第5页
资源描述:

《icp仪器及分析仪器详细分类介绍》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、ICP仪器及分析仪器详细分类介绍ICP仪器及分析仪器详细分类介绍原子发射光谱法是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。  原子发射光谱法包括了三个主要的过程,即: 由光源提供能量使样品蒸发、形成气态原子、并进一步使气态原子激发而  产生光辐射; 将光源发出的复合光经单色器分解成按波长顺序排列的谱线,形成光谱; 用检测器检测光谱中谱线的波长和强度。  由于待测元素原子的能级结构不同,因此发射谱线的特征不同,据此可对样品进行定性分析;而根据待测元素原子的浓度不同,因此发射强度不同,可实现元素

2、的定量测定。原子吸收光谱法是本世纪50年代中期出现并在以后逐渐发展起来的一种新型的仪器分析方法,这种方法根据蒸气相中被测元素的基态原子对其原子共振辐射的吸收强度来测定试样中被测元素的含量。它在地质、冶金、机械、化工、农业、食品、轻工、生物医药、环境保护、材料科学等各个领域有广泛的应用。 3.1.1原子吸收光谱法的优点与不足 <1>检出限低,灵敏度高。火焰原子吸收法的检出限可达到ppb级,石墨炉原子吸   收法的检出限可达到10-10-10-14g。 <2>分析精度好。火焰原子吸收法测定中等和高含量元素的相对标准差可<1%,其准

3、   确度已接近于经典化学方法。石墨炉原子吸收法的分析精度一般约为3-5%。 <3>分析速度快。原子吸收光谱仪在35分钟内,能连续测定50个试样中的6种元素。 <4>应用范围广。可测定的元素达70多个,不仅可以测定金属元素,也可以用间接   原子吸收法测定非金属元素和有机化合物。 <5>仪器比较简单,操作方便。 <6>原子吸收光谱法的不足之处是多元素同时测定尚有困难,有相当一些元素的测   定灵敏度还不能令人满意。3.1.2原子吸收光谱的发展历史    第一阶段原子吸收现象的发现与科学解释  早在1802年,伍朗斯顿(W.H.

4、Wollaston)在研究太阳连续光谱时,就发现了太阳连续光谱中出现的暗线。1817年,弗劳霍费(J.Fraunhofer)在研究太阳连续光谱时,再次发现了这些暗线,由于当时尚不了解产生这些暗线的原因,于是就将这些暗线称为弗劳霍费线。1859年,克希荷夫(G.Kirchhoff)与本生(R.Bunson)在研究碱金属和碱土金属的火焰光谱时,发现钠蒸气发出的光通过温度较低的钠蒸气时,会引起钠光的吸收,并且根据钠发射线与暗线在光谱中位置相同这一事实,断定太阳连续光谱中的暗线,正是太阳外围大气圈中的钠原子对太阳光谱中的钠辐射吸收的结

5、果。    第二阶段原子吸收光谱仪器的产生    原子吸收光谱作为一种实用的分析方法是从1955年开始的。这一年澳大利亚的瓦尔西(A.Walsh)发表了他的著名论文’原子吸收光谱在化学分析中的应用’奠定了原子吸收光谱法的基础。50年代末和60年代初,Hilger,VarianTechtron及Perkin-Elmer公司先后推出了原子吸收光谱商品仪器,发展了瓦尔西的设计思想。到了60年代中期,原子吸收光谱开始进入迅速发展的时期。    第三阶段电热原子吸收光谱仪器的产生  1959年,苏联里沃夫发表了电热原子化技术的第一篇论文

6、。电热原子吸收光谱法的绝对灵敏度可达到10-12-10-14g,使原子吸收光谱法向前发展了一步。近年来,塞曼效应和自吸效应扣除背景技术的发展,使在很高的的背景下亦可顺利地实现原子吸收测定。基体改进技术的应用、平台及探针技术的应用以及在此基础上发展起来的稳定温度平台石墨炉技术(STPF)的应用,可以对许多复杂组成的试样有效地实现原子吸收测定。    第四阶段原子吸收分析仪器的发展  随着原子吸收技术的发展,推动了原子吸收仪器的不断更新和发展,而其它科学技术进步,为原子吸收仪器的不断更新和发展提供了技术和物质基础。近年来,使用连续

7、光源和中阶梯光栅,结合使用光导摄象管、二极管阵列多元素分析检测器,设计出了微机控制的原子吸收分光光度计,为解决多元素同时测定开辟了新的前景。微机控制的原子吸收光谱系统简化了仪器结构,提高了仪器的自动化程度,改善了测定准确度,使原子吸收光谱法的面貌发生了重大的变化。联用技术(色谱-原子吸收联用、流动注射-原子吸收联用)日益受到人们的重视。色谱-原子吸收联用,不仅在解决元素的化学形态分析方面,而且在测定有机化合物的复杂混合物方面,都有着重要的用途,是一个很有前途的发展方向。1945年Bloch和Purcell分别领导两个小组同时独

8、立地观察到核磁共振(NuclearMagneticResonance,NMR),他们二人因此荣获1952年诺贝尔物理奖。1991年诺贝尔化学奖授予R.R.Ernst教授,以表彰他对二维核磁共振理论及傅里叶变换核磁共振的贡献。这两次诺贝尔奖的授予,充分地说明了核磁共振的重要性。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。