资源描述:
《r语言与机器学习(2)决策树算法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、算法二:决策树算法决策树定义首先,我们来谈谈什么是决策树。我们还是以鸢尾花为例子来说明这个问题。 观察上图,我们判决鸢尾花的思考过程可以这么来描述:花瓣的长度小于2.4cm的是setosa(图中绿色的分类),长度大于1cm的呢?我们通过宽度来判别,宽度小于1.8cm的是versicolor(图中红色的分类),其余的就是virginica(图中黑色的分类)我们用图形来形象的展示我们的思考过程便得到了这么一棵决策树:这种从数据产生决策树的机器学习技术叫做决策树学习,通俗点说就是决策树,说白了,这是一种依托于分
2、类、训练上的预测树,根据已知预测、归类未来。前面我们介绍的k-近邻算法也可以完成很多分类任务,但是他的缺点就是含义不清,说不清数据的内在逻辑,而决策树则很好地解决了这个问题,他十分好理解。从存储的角度来说,决策树解放了存储训练集的空间,毕竟与一棵树的存储空间相比,训练集的存储需求空间太大了。决策树的构建一、KD3的想法与实现下面我们就要来解决一个很重要的问题:如何构造一棵决策树?这涉及十分有趣的细节。先说说构造的基本步骤,一般来说,决策树的构造主要由两个阶段组成:第一阶段,生成树阶段。选取部分受训数据建立
3、决策树,决策树是按广度优先建立直到每个叶节点包括相同的类标记为止。第二阶段,决策树修剪阶段。用剩余数据检验决策树,如果所建立的决策树不能正确回答所研究的问题,我们要对决策树进行修剪直到建立一棵正确的决策树。这样在决策树每个内部节点处进行属性值的比较,在叶节点得到结论。从根节点到叶节点的一条路径就对应着一条规则,整棵决策树就对应着一组表达式规则。问题:我们如何确定起决定作用的划分变量。我还是用鸢尾花的例子来说这个问题思考的必要性。使用不同的思考方式,我们不难发现下面的决策树也是可以把鸢尾花分成3类的。 为了
4、找到决定性特征,划分出最佳结果,我们必须认真评估每个特征。通常划分的办法为信息增益和基尼不纯指数,对应的算法为C4.5和CART。关于信息增益和熵的定义烦请参阅百度百科,这里不再赘述。直接给出计算熵与信息增益的R代码:1、计算给定数据集的熵calcent<-function(data){nument<-length(data[,1])key<-rep("a",nument)for(iin1:nument)key[i]<-data[i,length(data)]ent<-0prob<-table(key)/
5、numentfor(iin1:length(prob))ent=ent-prob[i]*log(prob[i],2)return(ent)} 我们这里把最后一列作为衡量熵的指标,例如数据集mudat(自己定义的)>mudatxyz111y211y310n401n501n计算熵>calcent(mudat)10.9709506熵越高,混合的数据也越多。得到熵之后,我们就可以按照获取最大信息增益的方法划分数据集 2、按照给定特征划分数据集为了简单起见,我们仅考虑标称数据(对于非标称数据,我们采用划分的办
6、法把它们化成标称的即可)。R代码:split<-function(data,variable,value){result<-data.frame()for(iin1:length(data[,1])){if(data[i,variable]==value)result<-rbind(result,data[i,-variable])}return(result)} 这里要求输入的变量为:数据集,划分特征变量的序号,划分值。我们以前面定义的mudat为例,以“X”作为划分变量,划分得到的数据集为:>spl
7、it(mudat,1,1)yz11y21y30n>split(mudat,1,0)yz41n51n3、选择最佳划分(基于熵增益)choose<-function(data){numvariable<-length(data[1,])-1baseent<-calcent(data)bestinfogain<-0bestvariable<-0infogain<-0featlist<-c()uniquevals<-c()for(iin1:numvariable){featlist<-data[,i]unique
8、vals<-unique(featlist)newent<-0for(jin1:length(uniquevals)){subset<-split(data,i,uniquevals[j])prob<-length(subset[,1])/length(data[,1])newent<-newent+prob*calcent(subset)}infogain<-baseent-newentif(infogain>bestinf