电能收集充电器设计方案

电能收集充电器设计方案

ID:1351900

大小:539.00 KB

页数:27页

时间:2017-11-10

电能收集充电器设计方案_第1页
电能收集充电器设计方案_第2页
电能收集充电器设计方案_第3页
电能收集充电器设计方案_第4页
电能收集充电器设计方案_第5页
资源描述:

《电能收集充电器设计方案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、电能收集充电器设计方案随着社会的发展,能源已经成为当今的社会信息化进程的加快对电力、信息系统的安全稳定运行提出了更高的要求。在人们的生产、生活中,各种电气、电子设备的应用也越来越广泛,与人们的工作、生活的关系日益密切,越来越多的工业生产、控制、信息等重要数据都要由电子信息系统来处理和存储。而各种用电设备都离不开可靠的电源,如果在工作中间电源突然中断,人们的生产和生活都将受到不可估量的经济损失。对于由交流供电的用电设备,为了避免出现上述不利情况,必须设计一种电源系统,它能不间断的为人们的生产和生活提供以安全和操作为目的可靠的备用电源。为此,都使用了可蓄电池。这样,即使电力网停电,也可利

2、用电能收集充电器进行储蓄电能。近年来,节能环保理念深入人心,对半导体IC设计和应用也提出了更高的要求。2008年11月,五大手机制造商诺基亚、三星、索尼爱立信、摩托罗拉和LG电子联合发布了手机充电器的五星级标准。例如,待机功耗小于或等于30mW的手机充电器属于最高星级。相反,如果待机功耗≦500mW,则充电器标签上将无任何星级标记。为适应手机充电器的技术革新和发展,新近半导体制造有限公司于近期推出一种新的电源控制芯片AP3768,并基于AP3768开发出全面满足能源之星外部电源2.0标准和五星级标准的充电器方案。27在出现低压和小电流的情况下可以实现小电流的高效收集,在太阳能电池处于

3、阴雨天或风力发电机处于小风情况下,这些发电系统只能输出较低的电压,同时电流也比较小,在这种情况下,通常传统的直接向蓄电池充电的控制器因电压达不到蓄电池充电电压而难以向蓄电池实现充电,或者达到充电电压但电流过小而损失太大达不到充进蓄电池的目的。因此,研究电能收集充电器很有现实意义。2设计任务与要求2.1设计任务设计并制作一个电能收集充电器,充电器及测试原理示意图如图2.1。该充电器的核心为直流电源变换器,它从一直流电源中吸收电能,以尽可能大的电流充入一个可充电池。直流电源的输出功率有限,其电动势Es在一定范围内缓慢变化,当Es为不同值时,直流电源变换器的电路结构,参数可以不同。监测和控

4、制电路由直流电源变换器供电。由于Es的变化极慢,监测和控制电路应该采用间歇工作方式,以降低其能耗。可充电池的电动势Ec=3.6V,内阻Rc=0.1Ω。图2.1测试原理示意图2.2设计要求2.2.1基本要求(1)在Rs=100Ω,Es=10V~20V时,充电电流Ic27大于(Es-Ec)/(Rs+Rc)。(2)在Rs=100Ω时,能向电池充电的Es尽可能低。(3)Es从0逐渐升高时,能自动启动充电功能的Es尽可能低。(4)Es降低到不能向电池充电,最低至0时,尽量降低电池放电电流。(5)监测和控制电路工作间歇设定范围为0.1s~5s。2.2.2发挥部分(1)在Rs=1Ω,Es=1.2V

5、~3.6V时,以尽可能大的电流向电池充电。(2)能向电池充电的Es尽可能低。当Es≥1.1V时,取Rs=1Ω;当Es<1.1V时,取Rs=0.1Ω。(3)电池完全放电,Es从0逐渐升高时,能自动启动充电功能(充电输出端开路电压>3.6V,短路电流>0)的Es尽可能低。当Es≥1.1V时,取Rs=1Ω;当Es<1.1V时,取Rs=0.1Ω。(4)降低成本。(5)其他。3设计方案的选择与论证3.1方案选择和论证3.1.1电源变换拓扑方案论证本题目要求制作一个电能收集器,从输出0v~20v电压(内阻随功率变化)的直流电源吸收能量,给模拟电池充电。充电器输出电压不小于3.6v,用吸入型电源模

6、拟充电电池。27方案一:用分离元件完成电路设计。利用专业的PWM波驱动芯片驱动MOS管,完成DC-DC的变换。可以方便控制输出电压,但是驱动MOS管首先需要较大电压,无法满足题目中电源电压变动范围大的要求而且转换效率较低,功耗大,输出电压中的纹波大,对硬件系统要求高。方案二:CuK变换器如图3.1,CuK型变换器输出电压可通过公式(1)计算得到,能量存储和传递同时在两个开关期间和两个环路中进行,这种对称型可以使它达到较高的效率,两个电感适当耦合可以理论上达“零纹波”,但是该方案对电容要求较高,且需两个电感,成本高,同时输入输出相对地不同,控制电路相对复杂。公式(1):图3.1CuK变

7、换器方案三:BUCK变换器与BOOST变换器组合如图3.2,在Es=10V~20V时,采用BUCK电路实现功能,在ES<3.6V时,开关切换到BOOST电路工作。该方案电路原理简单,检测与控制电路简单且功耗能降到最低,可加入同步整流技术,大大提高系统效率,但是成本高,系统复杂。27图3.2BUCK变换器与BOOST变换器方案四:单端反激变换器如图3.3,将变压器的原边地和副边地连接,输入输出共地,可以方便信号取样,输入输出关系式见公式(2),而且方案成本低

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。