欢迎来到天天文库
浏览记录
ID:13433262
大小:1.95 MB
页数:251页
时间:2018-07-22
《【精品】新编人教a高中数学必修3全册教案导学案含答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、人教版高中数学必修3全册教案基因详解目录1.1.1算法的概念1.1.2程序框图1.2.1输入、输出语句和赋值语句1.2.2条件语句1.2.3循环语句1.3算法案例2.1.1简单随机抽样2.1.2系统抽样2.1.3分层抽样2.2.1用样本的频率分布估计总体分布2.2.2用样本的数字特征估计总体的数字特征2.3变量间的相关关系3.1.1.随机事件的概率3.1.2概率的意义3.1.3概率的基本性质3.2.1古典概型3.2.2古典概型及随机数的产生3.3.1几何概型3.3.2几何概型及均匀随机数的产生高中数学必修3教案导学案1.1.1算法的概念【教学目标】1
2、.了解算法的含义,体会算法的思想。2.能够用自然语言叙述算法。3.掌握正确的算法应满足的要求。【重点与难点】教学重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。教学难点:把自然语言转化为算法语言。【教学过程】1.情境导入:算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。但是我们却从小学就开始接触算法,熟悉许多问题的算法。如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解
3、线性方程组的算法,求两个数的最大公因数的算法等。因此,算法其实是重要的数学对象。2.探索研究算法(algorithm)一词源于算术(algorism),即算术方法,是指一个由已知推求未知的运算过程。后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法。广义地说,算法就是做某一件事的步骤或程序。菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。比如解方程的算法、函数求值的算法、作图的算法,等等。3.例题分析例1.任意给定一
4、个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判定。解析:根据质数的定义判断解:算法如下:第一步:判断n是否等于2,若n=2,则n是质数;若n>2,则执行第二步。第二步:依次从2至(n-1)检验是不是n的因数,即整除n的数,若有这样的数,则n不是质数;若没有这样的数,则n是质数。这是判断一个大于1的整数n是否为质数的最基本算法。第207页共251页高中数学必修3教案导学案点评:通过例1明确算法具有两个主要特点:有限性和确定性。变式训练1:一个人带三只狼和三只羚羊过河,只有一条船,同船可以容纳一个人和两只动物.没有人在的时候,如果狼的数量不少
5、于羚羊的数量,狼就会吃掉羚羊.请设计过河的算法。解:算法或步骤如下:S1人带两只狼过河;S2人自己返回;S3人带一只羚羊过河;S4人带两只狼返回;S5人带两只羚羊过河;S6人自己返回;S7人带两只狼过河;S8人自己返回;S9人带一只狼过河.例2给出求解方程组的一个算法.解析:解线性方程组的常用方法是加减消元法和代入消元法,这两种方法没有本质的差别,为了适用于解一般的线性方程组,以便于在计算机上实现,我们用高斯消元法(即先将方程组化为一个三角形方程组,在通过回代过程求出方程组的解)解线性方程组.解:用消元法解这个方程组,步骤是:第一步:方程①不动,将方
6、程②中的系数除以方程①中的系数,得到乘数;第二步:方程②减去乘以方程①,消去方程②中的项,得到;第三步:将上面的方程组自下而上回代求解,得到,.所以原方程组的解为.点评:通过例2再次明确算法特点:有限性和确定性变式训练2:写出求过两点M(-2,-1)、N(2,3)的直线与坐标轴围成面积的一个算法。第207页共251页高中数学必修3教案导学案解:算法:第一步:取x1=-2,y1=-1,x2=2,y2=3;第二步:计算;第三步:在第二步结果中令x=0得到y的值m,得直线与y轴交点(0,m);第四步:在第二步结果中令y=0得到x的值n,得直线与x轴交点(n
7、,0);第五步:计算S=;第六步:输出运算结果例3用二分法设计一个求解方程x2–2=0的近似根的算法。算法分析:回顾二分法解方程的过程,并假设所求近似根与准确解的差的绝对值不超过0.005,则不难设计出以下步骤:第一步:令f(x)=x2–2。因为f(1)<0,f(2)>0,所以设x1=1,x2=2。第二步:令m=(x1+x2)/2,判断f(m)是否为0,若则,则m为所长;若否,则继续判断f(x1)·f(m)大于0还是小于0。第三步:若f(x1)·f(m)>0,则令x1=m;否则,令x2=m。第四步:判断
8、x1–x2
9、<0.005是否成立?若是,则x1
10、、x2之间的任意取值均为满足条件的近似根;若否,则返回第二点评:渗透循环的思想,为后面教学做铺垫。变式训练3
此文档下载收益归作者所有