基于matlab的图像去噪论文

基于matlab的图像去噪论文

ID:13363021

大小:129.50 KB

页数:25页

时间:2018-07-22

基于matlab的图像去噪论文_第1页
基于matlab的图像去噪论文_第2页
基于matlab的图像去噪论文_第3页
基于matlab的图像去噪论文_第4页
基于matlab的图像去噪论文_第5页
资源描述:

《基于matlab的图像去噪论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、基于MATLAB的图像去噪论文目录摘要(中文)I(英文)II第一章概述21.1背景及其意义21.2小波变换的发展与研究现状21.3基于小波变换的图像去噪技术的优势21.4毕业设计所完成的工作31.5论文的内容安排3第二章图像与噪声52.1噪声图像模型及噪声特性5含噪模型5噪声特性62.2图像质量的评价6主观评价6客观评价7第三章图像去噪方法93.1传统去噪方法9空域滤波9频域低通滤波法103.2小波去噪13小波去噪的发展历程13小波去噪的研究现状14小波去噪方法16第四章小波阈值去噪及MATLAB仿真174.1小波阈值

2、去噪概述17阈值去噪法简述17小波阈值去噪方法174.2基于MATLAB的小波去噪函数简介184.3小波去噪与常用去噪方法的对比试验20图像系统中的常见噪声20几种去噪常用方法对比211.均值滤波212.中值滤波213 小波变换22结果对比与分析23结束语26致谢27参考文献28第一章概述1.1背景及其意义图像在生成和传输过程中常常因受到各种噪声的干扰和影响而使图像降质,这对后续图像的处理如分割、压缩和图像理解等将产生不利影响噪声种类很多,如:电噪声、机械噪声、信道噪声和其他噪声。在图像处理中,图像去噪是一个永恒的主题

3、,为了抑制噪声,改善图像质量,便于更高层次的处理,必须对图像进行去噪预处理。计算机图像处理主要采取两大类方法:一是在空间域中的处理,即在图像空间中对图像进行各种处理;另一类是把空间域中的图像经过正交变换到频域,在频域里进行各种处理然后反变换到空间域,形成处理后的图像。人们也根据实际图像的特点、噪声的统计特征和频谱分布的规律,发展了各式各样的去噪方法。其中最为直观的方法是根据噪声能量一般集中于高频而图像频谱则分布于一个有限区间的这一特点,采用低通滤波方式来进行去噪,对图像进行平滑处理,属于第一类图像处理方法。还有就是在频

4、域进行处理,如:傅立叶变换、小波基变换。近年来,小波理论得到了非常迅速的发展,而且由于其具备良好的时频特性,实际应用也非常广泛。其中图像的小波阈值去噪方法可以说是众多图像去噪方法的佼佼者。基本思想就是利用图像小波分解后,各个子带图像的不同特性选取不同的阈值,从而达到较好的去噪目的。而且,小波变换本身是一种线形变换,而国内外的研究大多集中在如何选取一个合适的全局阈值,通过处理低于该阈值的小波系数同时保持其余小波系数值不变的方法来降噪,大多数方法对于类似于高斯噪声的效果较好,但对于混有脉冲噪声的混合噪声的情形处理效果并不理

5、想线形运算往往还会造成边缘模糊小波分析技术正因其独特的时频局部化特性在图像信号和噪声信号的区分以及有效去除噪声并保留有用信息等方面较之传统的去噪具有明显的优势,且在去噪的同时实现了图像一定程度的压缩和边缘特征的提取。所以小波去噪具有无可比拟的优越性。小波去噪主要优点有:低熵性,小波系数的稀疏分布,使得图象变换后的熵降低;多分辨率,由于采用了多分辨率的方法,所以可以非常好地刻画信号的非平稳特征,如边缘、尖峰、断点等;去相关性,因为小波变换可以对信号进行去相关,且噪声在变换后有白化趋势,所以小波域比时域更利于去噪;选基灵活

6、性,由于小波变换可以灵活选择变换基,从而对不同应用场合、不同的研究对象,可以选用不同的小波函数,以获得最佳的效果。本文以图像去噪方法为研究对象,以小波图像去噪为研究方向,对比了传统去噪方法与小波去噪方法,比较深入地研究了基于小波的图像去噪对其在图像去噪中的应用做了进一步的探讨。噪声可以理解为“妨碍人们感觉器官对所接收的信源信息理解的因素”在理论上可定义为“不可预测,只能用概率统计方法来认识的随机误差”。全文安排具体如下:第二章主要介绍噪声的特性和噪声模型,图像质量的评价方法。第章主要对传统的去噪方法进行了总结和对比,指

7、出其去噪的不足,介绍小波变换,综述了小波去噪的发展历程分类。第章是对全文的总结与展望,概括了全文的研究内容和创新之处针对论文的不尽完善之处,提出了一些意见和建议,以供后续工作参考借鉴。人类获取外界信息有视觉、听觉、触觉、味觉等多种方法但绝大部分约80%是来自视觉所接收的图像信息,即所谓“百闻不如一见”。而图像处理就是对图像息进行加工处理,以满足人的视觉心理和实际应用的要求。因此,图像处理技术的广泛研究和应用是必然的趋势。在分析和使用图像之前,需要对图像信号进行一系列处理。比如调整图像的格式,对图像进行去噪等等。图像处理

8、是针对性很强的技术,根据不同、不同要求采用不同的处理方法。采用的方法是综合各学科较先进的成果而成的,如数学、物理学、心理学、生理学、医学、计算机科学、通信理论、、控制论和系统工程等各学科相互补充、相互渗透才使数字图像处理技术飞速发展。根据本文研究的内容,我们只探讨图像去噪这一图像预处理技术。一般来说,在图像采集、编码、传输、恢复的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。