欢迎来到天天文库
浏览记录
ID:13349040
大小:81.00 KB
页数:43页
时间:2018-07-22
《公考《行测全面复习资料二:数学运算部分》》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、公考行测全面复习资料二:数学运算部分1.数的拆分:数的拆分问题是公务员考试常考的题型之一,考察对数的基本特性的掌握,通常此类问题都比较灵活。一般来说此类问题整体难度不大,不过像考试中常用的代入法等在此将不再实用,故掌握方法就变得特别重要。下面我们就和大家分享几种常用的解决此类问题的方法。最后,行测、申论复习与考试过程中,阅读量都非常的大,如果不会提高效率,一切白搭。首先要学会快速阅读,一般人每分钟才看200字左右,我们要学会一眼尽量多看几个字,甚至是以行来计算,把我们的速读提高,然后再提高阅读量,这是申论的基础。《行测》的各种试题都是考察学生的思维,大家平时还要多刻意的训练自己的思维。学会快速
2、阅读,不仅在复习过程中效率倍增,在考试过程中更能够节省大量的时间,提高效率,而且,在我们一眼多看几个字的时候,还能够高度的集中我们的思维,大大的利于归纳总结,学会后,更有利于《行测》的复习、考试,特别是在学习速读的同事,还能够学习思维导图,对于《行测》的各种试题都能得心应手的应付。本人当年有幸学习了快速阅读,至今阅读速度已经超过5000字/分钟,学习效率自然不用说了。我读大学的成绩是很差,考公务员的时候我妈说我只是碰运气,结果最后成绩出来了居然考了岗位第二,对自己的成绩非常满意,速读记忆是我成功最大的功劳。找了半天,终于给大家找到了下载的地址,怕有的童鞋麻烦,这里直接给做了个超链接,先按住键盘
3、最左下角的“ctrl”按键不要放开,然后鼠标点击此行文字就可以下载了。认真练习,马上就能够看到效果了!此段是纯粹个人经验分享,可能在多个地方看见,大家读过的就不用再读了,只是希望能和更多的童鞋分享。 1.分解因式型:就是把一个合数分解成若干个质数相乘的形式。运用此方法解题首先要熟练掌握如何分解质因数,还要灵活组合这些质因数来达到解题的目的。 例题1:.三个质数的倒数之和为,则a=() A.68B.83C.95D.131 解析:将231分解质因数得231=3×7×11,则++=,故a=131。 例题2.四个连续的自然数的积为3024,它们的和为() A.26B
4、.52C.30D.28 解析:分解质因数:3024=2×2×2×2×3×3×3×7=6×7×8×9,所以四个连续的四个自然数的和为6+7+8+9=30。 2.已知某几个数的和,求积的最大值型: 基本原理:a2+b2≧2ab,(a,b都大于0,当且仅当a=b时取得等号) 推论:a+b=K(常数),且a,b都大于0,那么ab≦((a+b)/2)2,当且仅当a=b时取得等号。此结论可以推广到多个数的和为定值的情况。 例题1:3个自然数之和为14,它们的的乘积的最大值为() A.42B.84C.100D.120 解析:若使乘积最大,应把14拆分为5+5+4,则
5、积的最大值为5×5×4=100。也就是说,当不能满足拆分的数相等的情况下,就要求拆分的数之间的差异应该尽量的小,这样它们的乘积才能最大,这是做此类问题的指导思想。下面再举一列大家可以自己体会. 例题2:将17拆分成若干个自然数的和,这些自然数的乘积的最大值为() A.256B.486C.556D.376 解析:将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为×2=486。 3.排列组合型:运用排列组合知识解决数的分解问题。要求对排列组合有较深刻的理解,才能达到灵活运用的目的 例题1.:有多少种方法可以把100表示为(有顺序的)3个自然数之和?()
6、 A.4851B.1000C.256D.10000 解析:插板法:100可以想象为100个1相加的形式,现在我们要把这100个1分成3份,那么就相等于在这100个1内部形成的99个空中,任意插入两个板,这样就把它们分成了两个部分。而从99个空任意选出两个空的选法有:C992=99×98/2=4851(种);故选A。 (注:此题没有考虑0已经划入自然数范畴,如果选项中出现把0考虑进去的选项,建议选择考虑0的那个选项。) 例题2.学校准备了1152块正方形彩板,用它们拼成一个长方形,有多少种不同的拼法? A.1152B.384C.28D.12 解析:本题实际上是想
7、把1152分解成两个数的积。 解法一:1152=1×1152=2×576=3×384=4×288=6×192=8×144=9×128=12×96=16×72=18×64=24×48=32×36,故有12种不同的拼法。 解法二:1152=,用排列组合方法:我们现在就是要把这7个“2”和两个“3”分成两部分,每种分配方法对应一种拼法。具体地: 1)当两个“3”不挨着时,有4种分配方法
此文档下载收益归作者所有