高维数据的低维表示综述

高维数据的低维表示综述

ID:13342494

大小:50.31 KB

页数:41页

时间:2018-07-22

高维数据的低维表示综述_第1页
高维数据的低维表示综述_第2页
高维数据的低维表示综述_第3页
高维数据的低维表示综述_第4页
高维数据的低维表示综述_第5页
资源描述:

《高维数据的低维表示综述》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、------------------------------------------------------------------------------------------------高维数据的低维表示综述一、研究背景在科学研究中,我们经常要对数据进行处理。而这些数据通常都位于维数较高的空间,例如,当我们处理200个256*256的图片序列时,通常我们将图片拉成一个向量,这样,我们得到了65536*200的数据,如果直接对这些数据进行处理,会有以下问题:首先,会出现所谓的“位数灾难”问题,巨大的计算量将使我们无法忍受;其次,这些数据通常没有反映出数据的本质特征,如果直接对他们

2、进行处理,不会得到理想的结果。所以,通常我们需要首先对数据进行降维,然后对降维后的数据进行处理。降维的基本原理是把数据样本从高维输入空间通过线性或非线性映射投影到一个低维空间,从而找出隐藏在高维观测数据中有意义的低维结构。(8)之所以能对高维数据进行降维,是因为数据的原始表示常常包含大量冗余:·有些变量的变化比测量引入的噪声还要小,因此可以看作是无关的·有些变量和其他的变量有很强的相关性(例如是其他变量的线性组合或是其他函数依赖关系),可以找到一组新的不相关的变量。(3)——————————————————————————————————————-------------------

3、-----------------------------------------------------------------------------从几何的观点来看,降维可以看成是挖掘嵌入在高维数据中的低维线性或非线性流形。这种嵌入保留了原始数据的几何特性,即在高维空间中靠近的点在嵌入空间中也相互靠近。(12)数据降维是以牺牲一部分信息为代价的,把高维数据通过投影映射到低维空间中,势必会造成一些原始信息的损失。所以在对高维数据实施降维的过程中如何在最优的保持原始数据的本质的前提下,实现高维数据的低维表示,是研究的重点。(8)二、降维问题1.定义定义1.1降维问题的模型为(X,F

4、),其中D维数据空间集合X??xl?l?1(一般为RD的一个子集),映射FF:X?Yx?y?F(x),NY是d空间集合(一般是Rd,d??D)的一个子集,我们称F是数据集X(到Y)的降维。若F为X的线性函数,则称F为线性降维;否则,称为非线性降维。定义1.2称映射F?1F?1:Y?Xy?xF?1(y)为嵌入映射。(8)2.分类针对降维问题的目的和待处理数据集合表象维数的多少,对其进行初步的、粗略的分类如下:·硬降维问题:数据维数从几千到几万甚至几十万的变化,此时需要对数据集进行“严厉”的降维,以至于达到便于处理的大小,如图像识别、分类问题以及语音识别问题等。—————————————

5、—————————————————————————------------------------------------------------------------------------------------------------·软降维问题:此时数据集合的维数不是太高,降维的需求不是非常的迫切。如社会科学、心理学以及多元统计分析领域皆属于此类。·可视化问题:此时数据集合的绝对维数不是很高,但为了便于利用人们的直观洞察力,即为了可视化,我们将其降到2或3维。虽然我们可以可视化更高维数的数据,但是它们通常难于理解,不能产生数据空间的合理形态。若我们还考虑时间变量的话可以对降

6、维问题进行更加进一步的分类,静态降维问题和动态降维问题。后者对于时间序列来讲是有用的,如视频序列、连续语音信号等的处理。(4)3.方法介绍如何将高维数据表示在低维空间中,并由此发现其内在结构是高维信息处理研究的关键问题之一。实际处理中,由于线性方法具有简单性、易解释性、可延展性等优点,使得线性降维在高维数据处理中是一个主要研究方向。已有的线性维数约简方法,主要包括主成分分析(PrincipalComponentAnalysis,PCA)[16]、独立成分分析(IndependentComponentAnalysis,ICA)、线性判别分析ineardiscriminantanalys

7、is(LDA)[17]、Fisher判别分析(FisherDiscriminantAnalysis,FDA)、主曲线(PrincipalCurves)、投影寻踪(ProjectionPursuit,PP)、多维尺度方法(MultidimensionalScaling,MDS)等。这些方法实际是在不同优化准则之下,寻求最佳线性模型,这也是线性维数约简方法的共性。(10)——————————————————————————————————————-------

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。