欢迎来到天天文库
浏览记录
ID:1333000
大小:1.03 MB
页数:8页
时间:2017-11-10
《时间序列分析小论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、基于ARIMA模型的我国全社会固定资产投资预测摘要:本文采用ARIMA模型,用Eviews6.0软件对我国1980—2012年的全社会固定资产投资额进行了深入分析,并预测了2013年我国全社会固定资产投资额。结果表明,ARIMA(4,1,3)模型能够提供较准确的预测效果,可以用于未来的预测,并为我国固定资产投资提供可靠的依据。关键词:ARIMA模型固定资产投资额时间序列预测一、引言改革开放以来,我国的经济发展取得了举世瞩目的成就。投资是拉动经济增长的三驾马车之一,因此研究我国全社会固定资产投资对研究我国经济增长有着重要的现实意义。我国的全社会固定资产
2、投资总额持续增加:1980年仅为910.9亿元,1993年首次突破10000亿元达到13072.3亿元;到2006年则猛增至109998.2亿元。尤其是进入21世纪以来,随着中国加入WTO,外商投资大量增加,推动了经济政策的调整与完善,也给经济与投资增长增添了活力。此前,已经有学者做过相关研究。2010年李惠在《ARIMA模型在我国全社会固定资产投资预测中的应用》中,通过1980-2007年我国全社会固定资产投资的相关数据,运用统计学和计量经济学原理,从时间序列的定义出发,运用ARIMA建模方法,将ARIMA模型应用于我国历年全社会固定资产投资数据的
3、分析与预测,检验得出ARIMA(4,2,4)模型为最佳,建议政府抓住投资机遇,合理安排投资比例和投资金额,促进经济的健康发展。2007年靳宝琳和赫英迪在《ARIMA模型在太原市全社会固定资产投资预测中的应用》一文中采用Eviews软件系统中的时间序列建模方法对太原市的固定资产投资总额资料进行了分析,建立了ARIMA模型。结果显示ARIMA(2,1,3)模型提供了较准确的预测效果,可用于未来的预测,为太原市全社套固定资产投资的预测提供了一种方便实用的方法。王新华在《ARIMA模型在武汉市全社会固定投姿预测中的应用》中,采用ARIMA模型,对武汉市195
4、0—2003年的全社会固定资产投资额进行了深入分析。结果表明,ARIMA(8,1,9)模型提供较准确的预测效果,可以用于未来的预测,并为武汉市固定资产投资提供可靠的依据。对全社会固定资产投资有影响的因素很多,而这些因素彼此之间的关系很复杂。因此运用数理经济模型(即揭示经济活动中各个因素间的理论关系用确定性数学方程加以表述的方法来分析和预测是较为困难的)。所以,本文把我国全社会固定资产投资总额看成是一个时间序列,利用历史数据分析并得到其规律性,从而预测其未来值。二、模型的建立及预测过程1、模型的建立ARIMA模型全称为差分自回归移动平均模型,简记ARI
5、MA,是由博克思和詹金斯于70年代初提出的一著名时间序列预测方法,所以又称为box-jenkins模型、博克思-詹金斯法。其中ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归,p为自回归项;MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数。所谓ARIMA模型,是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型。ARIMA模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA)、自回归过程(AR)、自回归移动平均过程(ARMA)以及AR
6、IMA过程。①自回归模型AR(p)如果时间序列{}满足:其中:是独立同分布的随机变量序列,并且对于任意的t,E()=0,Var()=>0,则称时间序列{}服从p阶自回归模型,记为AR(p)。②移动平均模型MA(q)如果时间序列{}满足:则称时间序列{}服从q阶移动平均模型,记为MA(q)。是q阶移动平均模型的系数。③ARMA(p,q)模型如果时间序列{}满足:此模型是模型AR(p)与MA(q)的组合形式,记作ARMA(p,q)。当p=0时,ARMA(0,q)=MA(q);当q=0时,ARMA(p,0)=AR(p)。④ARIMA(p,d,q)模型对于非
7、平稳序列,经过几次差分后,如果能得到平稳的时间序列,就称这样的序列为单整序列。设是d阶单整序列,记作:~I(d)。如果时间序列经过d次差分后是一个ARIMA(p,q)过程,则称原时间序列是一个p阶自回归、d阶单整、q阶移动平均过程,记作ARIMA(p,d,q),d代表差分的次数。2.ARIMA模型预测的基本程序(1)根据时间序列的散点图、自相关图和偏自相关图,以及ADF单位根检验观察其方差、趋势及其季节性变化规律,识别该序列的平稳性。(2)数据进行平稳化处理。如果数据序列是非平稳的,则需对数据进行差分处理。对数据进行对数转换可以减低数据的异方差性。(
8、3)根据时间序列模型的识别规律,建立相应的模型:①若平稳时间序列的偏相关函数是截尾的,而自相关函数是拖尾的,
此文档下载收益归作者所有