用eviews处理时间序列分析

用eviews处理时间序列分析

ID:13322379

大小:6.57 MB

页数:178页

时间:2018-07-22

用eviews处理时间序列分析_第1页
用eviews处理时间序列分析_第2页
用eviews处理时间序列分析_第3页
用eviews处理时间序列分析_第4页
用eviews处理时间序列分析_第5页
资源描述:

《用eviews处理时间序列分析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、应用时间序列分析实验手册178应用时间序列分析实验手册178目录目录2第二章时间序列的预处理3一、平稳性检验3二、纯随机性检验9第三章平稳时间序列建模实验教程10一、模型识别10二、模型参数估计(如何判断拟合的模型以及结果写法)13三、模型的显著性检验17四、模型优化18第四章非平稳时间序列的确定性分析19一、趋势分析19二、季节效应分析34三、综合分析38第五章非平稳序列的随机分析44一、差分法提取确定性信息44二、ARIMA模型58三、季节模型62178第二章时间序列的预处理一、平稳性检验时序图检验和自相关图检验(一)时序图检验根据平稳时间序列均

2、值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界、无明显趋势及周期特征例2.1检验1964年——1999年中国纱年产量序列的平稳性1.在Eviews软件中打开案例数据图1:打开外来数据178图2:打开数据文件夹中案例数据文件夹中数据文件中序列的名称可以在打开的时候输入,或者在打开的数据中输入图3:打开过程中给序列命名图4:打开数据1782.绘制时序图可以如下图所示选择序列然后点Quick选择Scatter或者XYline;绘制好后可以双击图片对其进行修饰,如颜色、线条、点等图1:绘制散点图图2:年

3、份和产出的散点图178图3:年份和产出的散点图(二)自相关图检验例2.3导入数据,方式同上;在Quick菜单下选择自相关图,对Qiwen原列进行分析;可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列。图1:序列的相关分析178图2:输入序列名称图2:选择相关分析的对象图3:序列的相关分析结果:1.可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列2.看Q统计量的P值:该统计量的原假设为X的1期,2期……k期的自相关系数均等于0,备择假设为自相关系数中至少有一个不等于0,因此如图知,该P值都>5%的显著性水平,所以接受原假设,即序

4、列是纯随机序列,即白噪声序列(因为序列值之间彼此之间没有任何关联,所以说过去的行为对将来的发展没有丝毫影响,因此为纯随机序列,即白噪声序列.)有的题目平稳性描述可以模仿书本33页最后一段.(三)平稳性检验还可以用:178单位根检验:ADF,PP检验等;非参数检验:游程检验图1:序列的单位根检验表示不包含截距项图2:单位根检验的方法选择178图3:ADF检验的结果:如图,单位根统计量ADF=-0.016384都大于EVIEWS给出的显著性水平1%-10%的ADF临界值,所以接受原假设,该序列是非平稳的。二、纯随机性检验计算Q统计量,根据其取值判定是否为

5、纯随机序列。例2.3的自相关图中有Q统计量,其P值在K=6、12的时候均比较大,不能拒绝原假设,认为该序列是白噪声序列。另外,小样本情况下,LB统计量检验纯随机性更准确。178第三章平稳时间序列建模实验教程一、模型识别1.打开数据图1:打开数据2.绘制趋势图并大致判断序列的特征图2:绘制序列散点图178图3:输入散点图的两个变量图4:序列的散点图1783.绘制自相关和偏自相关图图1:在数据窗口下选择相关分析图2:选择变量图3:选择对象178图4:序列相关图4.根据自相关图和偏自相关图的性质确定模型类型和阶数如果样本(偏)自相关系数在最初的d阶明显大于

6、两倍标准差范围,而后几乎95%的自相关系数都落在2倍标准差的范围以内,而且通常由非零自相关系数衰减为小值波动的过程非常突然。这时,通常视为(偏)自相关系数截尾。截尾阶数为d。本例:n自相关图显示延迟3阶之后,自相关系数全部衰减到2倍标准差范围内波动,这表明序列明显地短期相关。但序列由显著非零的相关系数衰减为小值波动的过程相当连续,相当缓慢,该自相关系数可视为不截尾n偏自相关图显示除了延迟1阶的偏自相关系数显著大于2倍标准差之外,其它的偏自相关系数都在2倍标准差范围内作小值随机波动,而且由非零相关系数衰减为小值波动的过程非常突然,所以该偏自相关系数可视

7、为一阶截尾n所以可以考虑拟合模型为AR(1)自相关系数偏相关系数模型定阶拖尾P阶截尾AR(p)模型Q阶截尾拖尾MA(q)模型拖尾拖尾ARMA(P,Q)模型具体判别什么模型看书58到62的图例。:178二、模型参数估计根据相关图模型确定为AR(1),建立模型估计参数在ESTIMATE中按顺序输入变量cxccx(-1)或者cxcar(1)选择LS参数估计方法,查看输出结果,看参数显著性,该例中两个参数都显著。细心的同学可能发现两个模型的C取值不同,这是因为前一个模型的C为截距项;后者的C则为序列期望值,两个常数的含义不同。图1:建立模型178图2:输入模

8、型中变量,选择参数估计方法图3:参数估计结果图4:建立模型178图5:输入模型中变量,选择参数估计方法图6:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。