资源描述:
《遗传算法解决非线性规划问题的matlab程序》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、非线性整数规划的遗传算法Matlab程序(附图)通常,非线性整数规划是一个具有指数复杂度的NP问题,如果约束较为复杂,Matlab优化工具箱和一些优化软件比如lingo等,常常无法应用,即使能应用也不能给出一个较为令人满意的解。这时就需要针对问题设计专门的优化算法。下面举一个遗传算法应用于非线性整数规划的编程实例,供大家参考!模型的形式和适应度函数定义如下:这是一个具有200个01决策变量的多目标非线性整数规划,编写优化的目标函数如下,其中将多目标转化为单目标采用简单的加权处理。functionFitness=FITNESS(x,FARM,e,q,w)%%适应度
2、函数% 输入参数列表% x 决策变量构成的4×50的0-1矩阵% FARM 细胞结构存储的当前种群,它包含了个体x% e 4×50的系数矩阵% q 4×50的系数矩阵% w 1×50的系数矩阵%%gamma=0.98;N=length(FARM);%种群规模F1=zeros(1,N);F2=zeros(1,N);fori=1:N xx=FARM{i}; ppp=(1-xx)+(1-q).*xx; F1(i)=sum(w.*prod(ppp)); F2(i)=sum(sum(e.*xx));en
3、dppp=(1-x)+(1-q).*x;f1=sum(w.*prod(ppp));f2=sum(sum(e.*x));Fitness=gamma*sum(min([sign(f1-F1);zeros(1,N)]))+(1-gamma)*sum(min([sign(f2-F2);zeros(1,N)])); 针对问题设计的遗传算法如下,其中对模型约束的处理是重点考虑的地方function[Xp,LC1,LC2,LC3,LC4]=MYGA(M,N,Pm)%%求解01整数规划的遗传算法%%输入参数列表% M 遗传进化迭代次数% N 种群规模% Pm 变
4、异概率%%输出参数列表% Xp 最优个体% LC1 子目标1的收敛曲线% LC2 子目标2的收敛曲线% LC3 平均适应度函数的收敛曲线% LC4 最优适应度函数的收敛曲线%%参考调用格式[Xp,LC1,LC2,LC3,LC4]=MYGA(50,40,0.3)%%第一步:载入数据和变量初始化loadeqw;%载入三个系数矩阵e,q,w%输出变量初始化Xp=zeros(4,50);LC1=zeros(1,M);LC2=zeros(1,M);LC3=zeros(1,M);LC4=zeros(1,M);Best=inf;%%第二步:随机产生初始种群farm
5、=cell(1,N);%用于存储种群的细胞结构k=0;whilek %以下是一个合法个体的产生过程 x=zeros(4,50);%x每一列的1的个数随机决定 fori=1:50 R=rand; Col=zeros(4,1); ifR<0.7 RP=randperm(4);%1的位置也是随机的 Col(RP(1))=1; elseifR>0.9 RP=randperm(4); Col(RP(1:2))=1; els
6、e RP=randperm(4); Col(RP(1:3))=1; end x(:,i)=Col; end %下面是检查行和是否满足约束的过程,对于不满足约束的予以抛弃 Temp1=sum(x,2); Temp2=find(Temp1>20); iflength(Temp2)==0 k=k+1; farm{k}=x; endend %%以下是进化迭代过程counter=0;%设置迭代计数器whilecounter %%第三步:交叉 %交叉采
7、用双亲双子单点交叉 newfarm=cell(1,2*N);%用于存储子代的细胞结构 Ser=randperm(N);%两两随机配对的配对表 A=farm{Ser(1)};%取出父代A B=farm{Ser(2)};%取出父代B P0=unidrnd(49);%随机选择交叉点 a=[A(:,1:P0),B(:,(P0+1):end)];%产生子代a b=[B(:,1:P0),A(:,(P0+1):end)];%产生子代b newfarm{2*N-1}=a;%加入子代种群 newfarm{2*N}=b; %以下循环是重复上述
8、过程 fori=1: