高中数学(16三角函数模型的简单应用)教案新人教a版必修4

高中数学(16三角函数模型的简单应用)教案新人教a版必修4

ID:13196421

大小:380.50 KB

页数:15页

时间:2018-07-21

高中数学(16三角函数模型的简单应用)教案新人教a版必修4_第1页
高中数学(16三角函数模型的简单应用)教案新人教a版必修4_第2页
高中数学(16三角函数模型的简单应用)教案新人教a版必修4_第3页
高中数学(16三角函数模型的简单应用)教案新人教a版必修4_第4页
高中数学(16三角函数模型的简单应用)教案新人教a版必修4_第5页
资源描述:

《高中数学(16三角函数模型的简单应用)教案新人教a版必修4》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.6三角函数模型的简单应用整体设计教学分析三角函数作为描述现实世界中周期现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测其未来等方面都发挥着十分重要的作用.三角函数模型的简单应用的设置目的,在于加强用三角函数模型刻画周期变化现象的学习.本节教材通过4个例题,循序渐进地从四个层次来介绍三角函数模型的应用,在素材的选择上注意了广泛性、真实性和新颖性,同时又关注到三角函数性质(特别是周期性)的应用.通过引导学生解决有一定综合性和思考水平的问题,培养他们综合应用数学和其他学科的知识解决问题的能力.培养学生的建模、分析问题、数形结合、抽象概括等能力.由于实际问题常常涉及一些复杂

2、数据,因此要鼓励学生利用计算机或计算器处理数据,包括建立有关数据的散点图,根据散点图进行函数拟合等.三维目标1.能正确分析收集到的数据,选择恰当的三角函数模型刻画数据所蕴含的规律.将实际问题抽象为三角函数有关的简单函数模型.2.通过切身感受数学建模的全过程,体验数学在解决实际问题中的价值和作用,及数学与日常生活和其他学科的联系.认识数学知识在生产、生活实际中所发挥的作用.体会和感受数学思想的内涵及数学本质,逐步提高创新意识和实践能力.3.通过函数拟合得到具体的函数模型,提高数学建模能力.并在探究中激发学生的学习兴趣,培养锲而不舍的钻研精神,培养学生勇于探索、勤于思考的科学精神.重点难点教

3、学重点:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立三角函数模型,用三角函数模型解决一些具有周期变化规律的实际问题.教学难点:将某些实际问题抽象为三角函数的模型,并调动相关学科的知识来解决问题.课时安排2课时教学过程第1课时导入新课思路1.(问题导入)既然大到宇宙天体的运动,小到质点的运动以及现实世界中具有周期性变化的现象无处不在,那么究竟怎样用三角函数解决这些具有周期性变化的问题?它到底能发挥哪些作用呢?由此展开新课.思路2.我们已经学习了三角函数的概念、图象与性质,特别研究了三角函数的周期性.在现实生活中,如果某种变化着的现象具有周期性,那么是否可以借助三角函数来描述呢

4、?回忆必修1第三章第二节“函数模型及其应用”,面临一个实际问题,应当如何选择恰当的函数模型来刻画它呢?以下通过几个具体例子,来研究这种三角函数模型的简单应用.推进新课新知探究提出问题①回忆从前所学,指数函数、对数函数以及幂函数的模型都是常用来描述现实世界中的哪些规律的?②数学模型是什么,建立数学模型的方法是什么?③上述的数学模型是怎样建立的?④怎样处理搜集到的数据?活动:师生互动,唤起回忆,充分复习前面学习过的建立数学模型的方法与过程.对课前已经做好复习的学生给予表扬,并鼓励他们类比以前所学知识方法,继续探究新的数学模型.对还没有进入状态的学生,教师要帮助回忆并快速激起相应的知识方法.在

5、教师的引导下,学生能够较好地回忆起解决实际问题的基本过程是:收集数据→画散点图→选择函数模型→求解函数模型→检验→用函数模型解释实际问题.这点很重要,学生只要有了这个认知基础,本节的简单应用便可迎刃而解.新课标下的教学要求,不是教师给学生解决问题或带领学生解决问题,而是教师引领学生逐步登高,在合作探究中自己解决问题,探求新知.讨论结果:①描述现实世界中不同增长规律的函数模型.②简单地说,数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的数学描述.数学模型的方法,是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题

6、的一般数学方法.③解决问题的一般程序是:1°审题:逐字逐句的阅读题意,审清楚题目条件、要求、理解数学关系;2°建模:分析题目变化趋势,选择适当函数模型;3°求解:对所建立的数学模型进行分析研究得到数学结论;4°还原:把数学结论还原为实际问题的解答.④画出散点图,分析它的变化趋势,确定合适的函数模型.应用示例例1如图1,某地一天从6—14时的温度变化曲线近似满足函数y=sin(ωx+φ)+b.图1(1)求这一天的最大温差;(2)写出这段曲线的函数解析式.活动:这道例题是2002年全国卷的一道高考题,探究时教师与学生一起讨论.本例是研究温度随时间呈周期性变化的问题.教师可引导学生思考,本例给

7、出模型了吗?给出的模型函数是什么?要解决的问题是什么?怎样解决?然后完全放给学生自己讨论解决.题目给出了某个时间段的温度变化曲线这个模型.其中第(1)小题实际上就是求函数图象的解析式,然后再求函数的最值差.教师应引导学生观察思考:“求这一天的最大温差”实际指的是“求6是到14时这段时间的最大温差”,可根据前面所学的三角函数图象直接写出而不必再求解析式.让学生体会不同的函数模型在解决具体问题时的不同作用.第(2)小题只要用待定系数法求

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。