6函数的定义域、值域(最大、最小值)

6函数的定义域、值域(最大、最小值)

ID:13023671

大小:1.27 MB

页数:12页

时间:2018-07-20

6函数的定义域、值域(最大、最小值)_第1页
6函数的定义域、值域(最大、最小值)_第2页
6函数的定义域、值域(最大、最小值)_第3页
6函数的定义域、值域(最大、最小值)_第4页
6函数的定义域、值域(最大、最小值)_第5页
资源描述:

《6函数的定义域、值域(最大、最小值)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、6题目第二章函数函数的定义域、值域(最大、最小值)高考要求掌握求函数值域的基本方法(直接法、换元法、判别式法);掌握二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法求函数最大、最小值问题历来是高考热点,这类问题的出现率很高,应用很广因此我们应注意总结最大、最小值问题的解题方法与技巧,以提高高考应变能力因函数的最大、最小值求出来了,值域也就知道了反之,若求出的函数的值域为非开区间,函数的最大或最小值也等于求出来了知识点归纳由给定函数解析式求其定义域这类问题的代表,实际上是求使给定式有意义的x的取值范围它依赖于对各种式的认识与解不等式技能的熟练1求函数解析式的

2、题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知求或已知求:换元法、配凑法;(3)已知函数图像,求函数解析式;(4)满足某个等式,这个等式除外还有其他未知量,需构造另个等式:解方程组法;(5)应用题求函数解析式常用方法有待定系数法等2求函数定义域一般有三类问题:(1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合;(2)实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义;(3)已知的定义域求的定义域或已知的定义域求的定义域:①掌握基本初等函数(尤其是分式函数、无理函数、对数函数、三角函数)的定义域;②若已知的定义

3、域,其复合函数的定义域应由解出3求函数值域的各种方法函数的值域是由其对应法则和定义域共同决定的其类型依解析式的特点分可分三类:(1)求常见函数值域;(2)求由常见函数复合而成的函数的值域;(3)求由常见函数作某些“运算”而得函数的值域①直接法:利用常见函数的值域来求一次函数y=ax+b(a0)的定义域为R,值域为R;反比例函数的定义域为{x

4、x0},值域为{y

5、y0};12二次函数的定义域为R,当a>0时,值域为{};当a<0时,值域为{}②配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;③分式转化法(或改为“分离常数法”)④换元法:通过变量代换转化

6、为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域;⑦单调性法:函数为单调函数,可根据函数的单调性求值域⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域⑨逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:题型讲解例1已知函数定义域为(0,2),求下列函数的定义域:(1);(2)分析:x的函数f(x)是由u=x与f(u)这两个函数复合而成的复合函数,其中x是自变量,u是中间变量由于f(x),f(u)是同一个函数,

7、故(1)为已知0<u<2,即0<x<2求x的取值范围解:(1)由0<x<2,得说明:本例(1)是求函数定义域的第二种类型,即不给出f(x)的解析式,由f(x)的定义域求函数f[g(x)]的定义域关键在于理解复合函数的意义,用好换元法(2)是二种类型的综合12求函数定义域的第三种类型是一些数学问题或实际问题中产生的函数关系,求其定义域,后面还会涉及到例2已知函数的定义域为,函数的定义域为,则解:,,令且,故∴,故选取例3求下列函数的值域①y=3x+2(-1x1)②③④解:①∵-1x1,∴-33x3,∴-13x+25,即-1y5,∴值域是[-1,5]②∵∴即函数的值域是{y

8、y

9、2}③∵∴即函数的值域是{y

10、yÎR且y¹1}(此法亦称分离常数法)④当x>0,∴=,当x<0时,=-12∴值域是[2,+)(此法也称为配方法)函数的图像为:∴值域是[2,+)例4求下列函数的值域:(1);(2);(3);(4);(5);(6);(7);(8);(9)解:(1)(配方法),∴的值域为改题:求函数,的值域解:(利用函数的单调性)函数在上单调增,∴当时,原函数有最小值为;当时,原函数有最大值为∴函数,的值域为(2)求复合函数的值域:设(),则原函数可化为又∵,∴,故,∴的值域为(3)(法一)反函数法:的反函数为,其定义域为,∴原函数的值域为12(法二)分离变量法

11、:,∵,∴,∴函数的值域为(4)换元法(代数换元法):设,则,∴原函数可化为,∴,∴原函数值域为说明:总结型值域,变形:或(5)三角换元法:∵,∴设,则∵,∴,∴,∴,∴原函数的值域为(6)数形结合法:,∴,∴函数值域为(7)判别式法:∵恒成立,∴函数的定义域为12由得:①①当即时,①即,∴②当即时,∵时方程恒有实根,∴,∴且,∴原函数的值域为(8),∵,∴,∴,当且仅当时,即时等号成立∴,∴原函数的值域为(9)(法一)方程法:原函数可化为:,∴(其中),∴,∴,∴,∴,∴原函数的值域为例5求函数的值域12方法一:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。