人脸识别技术发展及实用方案设计

人脸识别技术发展及实用方案设计

ID:12972262

大小:1.13 MB

页数:12页

时间:2018-07-20

人脸识别技术发展及实用方案设计_第1页
人脸识别技术发展及实用方案设计_第2页
人脸识别技术发展及实用方案设计_第3页
人脸识别技术发展及实用方案设计_第4页
人脸识别技术发展及实用方案设计_第5页
资源描述:

《人脸识别技术发展及实用方案设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、人脸识别技术发展及实用方案设计人脸识别技术不但吸引了Google、Facebook、阿里、腾讯、百度等国内外互联网巨头的大量研发投入,也催生了Face++、商汤科技、Linkface、中科云从、依图等一大波明星创业公司,在视频监控、刑事侦破、互联网金融身份核验、自助通关系统等方向创造了诸多成功应用案例。本文试图梳理人脸识别技术发展,并根据作者在相关领域的实践给出一些实用方案设计,期待能对感兴趣的读者有所裨益。概述通俗地讲,任何一个的机器学习问题都可以等价于一个寻找合适变换函数的问题。例如语音识别,就是在求取合适的变换函数,将输入的一维时序语音信号变换到语义

2、空间;而近来引发全民关注的围棋人工智能AlphaGo则是将输入的二维布局图像变换到决策空间以决定下一步的最优走法;相应的,人脸识别也是在求取合适的变换函数,将输入的二维人脸图像变换到特征空间,从而唯一确定对应人的身份。一直以来,人们都认为围棋的难度要远大于人脸识别,因此,当AlphaGo以绝对优势轻易打败世界冠军李世乭九段和柯洁九段时,人们更惊叹于人工智能的强大。实际上,这一结论只是人们的基于“常识”的误解,因为从大多数人的切身体验来讲,即使经过严格训练,打败围棋世界冠军的几率也是微乎其微;相反,绝大多数普通人,即便未经过严格训练,也能轻松完成人脸识别的任

3、务。然而,我们不妨仔细分析一下这两者之间的难易程度:在计算机的“眼里”,围棋的棋盘不过是个19x19的矩阵,矩阵的每一个元素可能的取值都来自于一个三元组{0,1,2},分别代表无子,白子及黑子,因此输入向量可能的取值数为3的361次方;而对于人脸识别来讲,以一幅512x512的输入图像为例,它在计算机的“眼中”是一个512x512x3维的矩阵,矩阵的每一个元素可能的取值范围为0~255,因此输入向量可能的取值数为256的786432次方。虽然,围棋AI和人脸识别都是寻求合适的变换函数f,但后者输入空间的复杂度显然远远大于前者。对于一个理想的变换函数f而言,

4、为了达到最优的分类效果,在变换后的特征空间上,我们希望同类样本的类内差尽可能小,同时不同类样本的类间差尽可能大。但是,理想是丰满的,现实却是骨感的。由于光照、表情、遮挡、姿态等诸多因素(如图1)的影响,往往导致不同人之间的差距比相同人之间差距更小,如图2。人脸识别算法发展的历史就是与这些识别影响因子斗争的历史。图1人脸识别的影响因素图2姿态导致不同人相似度比同人更高人脸识别技术发展早在20世纪50年代,认知科学家就已着手对人脸识别展开研究。20世纪60年代,人脸识别工程化应用研究正式开启。当时的方法主要利用了人脸的几何结构,通过分析人脸器官特征点及其之间的

5、拓扑关系进行辨识。这种方法简单直观,但是一旦人脸姿态、表情发生变化,则精度严重下降。1991年,著名的“特征脸”方法[1]第一次将主成分分析和统计特征技术引入人脸识别,在实用效果上取得了长足的进步。这一思路也在后续研究中得到进一步发扬光大,例如,Belhumer成功将Fisher判别准则应用于人脸分类,提出了基于线性判别分析的Fisherface方法[2]。21世纪的前十年,随着机器学习理论的发展,学者们相继探索出了基于遗传算法、支持向量机(SupportVectorMachine,SVM)、boosting、流形学习以及核方法等进行人脸识别。2009年至

6、2012年,稀疏表达(SparseRepresentation)[3]因为其优美的理论和对遮挡因素的鲁棒性成为当时的研究热点。与此同时,业界也基本达成共识:基于人工精心设计的局部描述子进行特征提取和子空间方法进行特征选择能够取得最好的识别效果。Gabor[4]及LBP[5]特征描述子是迄今为止在人脸识别领域最为成功的两种人工设计局部描述子。这期间,对各种人脸识别影响因子的针对性处理也是那一阶段的研究热点,比如人脸光照归一化、人脸姿态校正、人脸超分辨以及遮挡处理等。也是在这一阶段,研究者的关注点开始从受限场景下的人脸识别转移到非受限环境下的人脸识别。LFW人

7、脸识别公开竞赛在此背景下开始流行,当时最好的识别系统尽管在受限的FRGC测试集上能取得99%以上的识别精度,但是在LFW上的最高精度仅仅在80%左右,距离实用看起来距离颇远。2013年,MSRA的研究者首度尝试了10万规模的大训练数据,并基于高维LBP特征和JointBayesian方法[6]在LFW上获得了95.17%的精度。这一结果表明:大训练数据集对于有效提升非受限环境下的人脸识别很重要。然而,以上所有这些经典方法,都难以处理大规模数据集的训练场景。2014年前后,随着大数据和深度学习的发展,神经网络重受瞩目,并在图像分类、手写体识别、语音识别等应用

8、中获得了远超经典方法的结果。香港中文大学的SunYi等人提出将卷积

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。