锂离子电池负极材料的研究进展

锂离子电池负极材料的研究进展

ID:12624363

大小:35.50 KB

页数:8页

时间:2018-07-18

锂离子电池负极材料的研究进展_第1页
锂离子电池负极材料的研究进展_第2页
锂离子电池负极材料的研究进展_第3页
锂离子电池负极材料的研究进展_第4页
锂离子电池负极材料的研究进展_第5页
资源描述:

《锂离子电池负极材料的研究进展》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、锂离子电池负极材料的研究进展化学与生物工程学院化工08-13080313115班继航摘要:锂离子电池的石墨负极材料已商品化,但还存在一些难以克服的弱点,所以寻找性能更为优良的非碳负极材料仍然是锂离子电池研究的重要课题。本文综述了在锂离子电池中已实际使用的碳素类负极材料的特点和研究进展情况,并且介绍了正在探索中的锂离子电池非碳负极材料的研究现状。关键词:锂离子电池负极材料非碳负极材料研究进展锂离子电池与其它二次电池相比具有电压高、比能量大、质量轻、环境友好等优点,目前已经广泛应用于便携式电子产品和电动工具等领域,并有望成为未来混合动力汽车和纯动力汽车的能源供给之一。负极材料是决

2、定锂离子电池综合性能优劣的关键因素之一,锂离子电池的负极是由负极活性物质碳材料或非碳材料、粘合剂和添加剂混合制成糊状胶合剂均匀涂抹在铜箔两侧,经干燥、滚压而成的。锂离子电池能否成功地制成,关键在于能否制备出可逆地脱/嵌锂离子的负极材料。目前商业化石墨类碳负极材料虽然具有较好的循环性能,但由于存在较低的质量比容量(理论值为372mAh/g)和较差的高倍率充放电性能,尤其是体积比容量相当有限。因此进一步提高其容量的空间很小,远不能满足未来高容量长寿命电子设备的需求。近年来,金属及合金类材料是研究得较多的新型高效储锂负极材料体系,其中锡金属与锡合金具有高质量比容量(锡的理论值为99

3、4mAh/g)和低成本的优势,特别是具有高体积比容量(锡的理论值为7200mAh/cm3),是碳材料体积比容量的10倍,因此现已成为目前国际上研究的主流负极材料之一。然而,传统的建立在实验基础之上的研究方法浪费了大量的人力、物力和财力,由于锡基候选电极材料的多样性,因此从理论上去寻求锡基嵌锂材料,探索一种合金理论设计方法,并用于指导实验和分析实验结果,以及模拟和预测锡基材料的各种电化学性能,对未来合金电极材料的研究发展具有重要的指导意义。一般来说,选择一种好的负极材料应遵循以下原则:比能量高;相对锂电极的电极电位低;充放电反应可逆性好;与电解液和粘结剂的兼容性好;比表面积小(

4、小于10m2/g),真密度高(大于2.0g/cm3);嵌锂过程中尺寸和机械稳定性好;资源丰富,价格低廉;在空气中稳定、无毒副作用。目前,已实际用于锂离子电池的负极材料一般都是碳素材料,如石墨、软碳(如焦炭等)、硬碳等。正在探索的负极材料有锡基氧化物、锡合金、以及其他的一些金属间化合物等。1碳负极材料1.1石墨石墨材料导电性好,结晶度较高,具有良好的层状结构,适合锂的嵌入-脱嵌,形成锂-石墨层间化合物Li-GIC,充放电比容量可达300mAh/g以上,充放电效率在90%以上,不可逆容量低于50mAh/g。锂在石墨中脱嵌反应发生在0~0.25V左右,具有良好的充放电电位平台,可与

5、提供锂源的正极材料LiCoO2,LiNiO2,LiMn2O4等匹配,组成的电池平均输出电压高,是目前锂离子电池应用最多的负极材料。石墨包括人工石墨和天然石墨两大类。人工石墨是将易石墨化炭(如沥青焦炭)在N2气氛中于1900~2800℃经高温石墨化处理制得。常见人工石墨有中间相碳微球和石墨纤维。天然石墨有无定形石墨和鳞片石墨两种。无定形石墨纯度低,石墨晶面间距为0.336nm。主要为2H晶面排序结构,即按ABAB……顺序排列,可逆比容量仅260mAh/g,不可逆比容量在100mAh/g以上。鳞片石墨晶面间距为0.335nm,主要为2H+3R晶面排序结构,即石墨层按ABAB……及

6、ABCABC……两种顺序排列。含碳99%以上的鳞片石墨,可逆容量可达300~350mAh/g。由于石墨间距小于锂-层间化合物Li-GIC的晶面层间距,致使在充放电过程中,石墨层间距改变,易造成石墨层剥落、粉化,还会发生锂与有机溶剂共同嵌入石墨层及有机溶剂分解,将影响电池循环性能。因此,人们又研究了其他的一些石墨材料,如改性石墨和石墨化碳纤维等。1.2软碳软碳即易石墨化碳,是指在2500℃以上的高温下能石墨化的无定形碳。软碳的结晶度(即石墨化度)低,晶粒尺寸小,晶面间距较大,与电解液的相容性好,但首次充放电的不可逆容量较高,输出电压较低,无明显的充放电平台电位。常见的软碳有石油

7、焦、针状焦、碳纤维、碳微球等。1.3硬碳硬碳是指难石墨化碳,是高分子聚合物的热解碳,这类碳在2500℃以上的高温也难以石墨化。常见的硬碳有树脂碳(如酚醛树脂、环氧树脂、聚糠醇PFA-C等)、有机聚合物热解碳(PVA,PVC,PVDF,PAN等)、碳黑(乙炔黑),其中,聚糠醇树脂碳PFA-C,日本Sony公司已用作锂离子电池负极材料。PFA-C的容量可达400mAh/g,PFA-C晶面间距较大,这有利于锂的嵌入而不会引起结构显著膨胀,具有很好的充放电循环性能。另一种硬碳材料是由酚醛树脂在800℃以下热解得

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。