欢迎来到天天文库
浏览记录
ID:12598944
大小:225.00 KB
页数:5页
时间:2018-07-18
《数列求和的基本方法和技巧》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、数列求和的基本方法和技巧一.公式法1、等差数列求和公式:2、等比数列求和公式:3、4、5,[例1]已知,求的前n项和.解:由===1-[例2]设Sn=1+2+3+…+n,n∈N*,求的最大值.解:由等差数列求和公式得,∴===∴当,即n=8时,二、错位相减法求和这种方法主要用于求数列{an· bn}的前n项和,其中{an}、{bn}分别是等差数列和等比数列.[例3]求和:………………………①解:由题可知,{}的通项是等差数列{2n-1}的通项与等比数列{}的通项之积设……………………….②(设制错位)①-②得(错位相减)5/5再利用等比数列的求和公式得:∴[例4]求数列前n项的和.解
2、:由题可知,{}的通项是等差数列{2n}的通项与等比数列{}的通项之积设…………………………………①………………………………②(设制错位)①-②得(错位相减)∴三.倒序相加法求和这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个.[例5]求证:证明:设…………………………..①把①式右边倒转过来得(反序)又由可得…………..……..②①+②得(反序相加)∴[例6]求的值解:设………….①将①式右边反序得…………..②(反序)又因为5/5①+②得=89∴S=44.5四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若
3、将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7]求数列的前n项和:,…解:设将其每一项拆开再重新组合得(分组)当a=1时,=(分组求和)当时,=[例8]求数列{n(n+1)(2n+1)}的前n项和.解:设∴=将其每一项拆开再重新组合得Sn=(分组)===练习:求数列的前n项和。解:五、裂项法求和这是分解与组合思想在数列求和中的具体应用.5/5裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1)(2)(3)(4)(5)(6)[例9]求数列的前n项和.解:设(裂项)则(裂项求和
4、)==[例10]在数列{an}中,,又,求数列{bn}的前n项的和.解: ∵ ∴(裂项)∴数列{bn}的前n项和(裂项求和)==∴ 原等式成立六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.[例12]求cos1°+cos2°+cos3°+···+cos178°+cos179°的值.解:设Sn=cos1°+cos2°+cos3°+···+cos178°+cos179°5/5∵(找特殊性质项)∴Sn=(cos1°+cos179°)+(cos2°+cos178°)+(cos3°+cos177°)+···
5、+(cos89°+cos91°)+cos90°(合并求和)=0[例14]在各项均为正数的等比数列中,若的值.解:设由等比数列的性质(找特殊性质项)和对数的运算性质得(合并求和)===10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.[例15]求之和.解:由于(找通项及特征)∴=(分组求和)===练习:求5,55,555,…,的前n项和。解:∵an=59(10n-1)∴Sn=59(10-1)+59(102-1)+59(103-1)+…+59(10n-1)=59[(10+102+103+…
6、…+10n)-n]=(10n+1-9n-10)5/5
此文档下载收益归作者所有