欢迎来到天天文库
浏览记录
ID:12555253
大小:214.50 KB
页数:5页
时间:2018-07-17
《高中数学(人教a版)选修1-1教案:2.2.2双曲线的简单几何性质教案2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、亲爱的同学:经过一番刻苦学习,大家一定跃跃欲试地展示了一下自己的身手吧!那今天就来小试牛刀吧!注意哦:在答卷的过程中一要认真仔细哦!不交头接耳,不东张西望!不紧张!养成良好的答题习惯也要取得好成绩的关键!祝取得好成绩!一次比一次有进步!●教学目标1.掌握双曲线的准线方程.2.能应用双曲线的几何性质求双曲线方程;3.应用双曲线知识解决生产中的实际问题.●教学重点双曲线的准线与几何性质的应用●教学难点双曲线离心率、准线方程与双曲线关系.●教学方法启发式●教具准备三角板●教学过程I.复习回顾:师:上一节,我们利用双曲
2、线的标准方程推导了双曲线的几何性质,下面我们作一简要的回顾(略),这一节我们将继续研究双曲线的几何性质及其应用.II.讲授新课:例2双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面,它的最小半径为12m,上口半径为13m,下口半径为25m,高55m.选择适当的坐标系,求出此双曲线的方程(精确到1m).解:如图8—17,建立直角坐标系xOy,使A圆的直径AA′在x轴上,圆心与原点重合.这时上、下口的直径CC′、BB′平行于x轴,且=13×2(m),=25×2(m).设双曲线的方程为(a>0,b>0
3、)令点C的坐标为(13,y),则点B的坐标为(25,y-55).因为点B、C在双曲线上,所以解方程组由方程(2)得(负值舍去).代入方程(1)得化简得19b2+275b-18150=0(3)解方程(3)得b≈25(m).所以所求双曲线方程为:说明:这是一个有实际意义的题目.解这类题目时,首先要解决以下两个问题;(1)选择适当的坐标系;(2)将实际问题中的条件借助坐标系用数学语言表达出来.例3点M(x,y)与定点F(c,o)的距离和它到定直线l:x=的距离的比是常数求点M的轨迹.解:设d是点M到直线l的距离.根据
4、题意,所求轨迹是集合p=,由此得化简得(c2-a2)x2-a2y2=a2(c2-a2).设c2-a2=b2,就可化为:这是双曲线的标准方程,所以点M的轨迹是实轴长、虚轴长分别为2a、2b的双曲线.(图8—18)说明:此例题要求学生进一步熟悉并熟练掌握求解曲线轨迹方程的一般步骤.6.双曲线的准线:由例3可知,当点M到一个定点的距离和它到一条定直线的距离的比是常数e=(e>1)时,这个点的轨迹是双曲线.定点是双曲线的焦点,定直线叫双曲线的准线,常数e是双曲线的离心率.准线方程:x=其中x=相应于双曲线的右焦点F(c
5、,0);x=-相应于左焦点F′(-c,0).师:下面我们通过练习来进一步熟悉双曲线几何性质的应用.III.课堂练习:课本P1132、3、4、5.要求学生注意离心率、准线方程与双曲线的关系的应用.●课堂小结师:通过本节学习,要求大家熟练掌握双曲线几何性质的应用,并注意利用离心率、准线方程与双曲线的关系确定双曲线方程的方法,并了解双曲线在实际中的应用问题.●课后作业习题8.42,3,4,7●板书设计§8.4.2…例2…例3…6.双曲线的学生准线练习●教学后记亲爱的同学:经过一番刻苦学习,大家一定跃跃欲试地展示了一下
6、自己的身手吧!成绩肯定会很理想的,在以后的学习中大家一定要用学到的知识让知识飞起来,学以致用!在考试的过程中也要养成仔细阅读,认真审题,努力思考,以最好的状态考出好成绩!你有没有做到这些呢?是不是又忘了检查了?快去再检查一下刚完成的试卷吧!
此文档下载收益归作者所有