难点9 指数函数`对数函数问题

难点9 指数函数`对数函数问题

ID:12498464

大小:31.00 KB

页数:6页

时间:2018-07-17

难点9 指数函数`对数函数问题_第1页
难点9 指数函数`对数函数问题_第2页
难点9 指数函数`对数函数问题_第3页
难点9 指数函数`对数函数问题_第4页
难点9 指数函数`对数函数问题_第5页
资源描述:

《难点9 指数函数`对数函数问题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、难点9指数函数`对数函数问题素食则气不浊;独宿则神不浊;默坐则心不浊;读书则口不浊。——曾国藩            难点9指数函数、对数函数问题指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性质并会用它们去解决某些简单的实际问题.●难点磁场(★★★★★)设f(x)=log2,F(x)=+f(x).(1)试判断函数f(x)的单调性,并用函数单调性定义,给出证明;(2)若f(x)的反函数为f-1(x),证明:对任意的自然数n(n≥3),都有f-1(n)>;(3)若F(x)的反函数F-1(x),证明:方程F-1(x)=0有惟一解.●案例探究[例1]已知过原

2、点O的一条直线与函数y=log8x的图象交于A、B两点,分别过点A、B作y轴的平行线与函数y=log2x的图象交于C、D两点.(1)证明:点C、D和原点O在同一条直线上;(2)当BC平行于x轴时,求点A的坐标.命题意图:本题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查学生的分析能力和运算能力.属★★★★级题目.知识依托:(1)证明三点共线的方法:kOC=kOD.(2)第(2)问的解答中蕴涵着方程思想,只要得到方程(1),即可求得A点坐标.错解分析:不易考虑运用方程思想去解决实际问题.技巧与方法:本题第一问运用斜率相等去证明三点共线;第二问运用方程思想去求得点A的坐标

3、.(1)证明:设点A、B的横坐标分别为x1、x2,由题意知:x1>1,x2>1,则A、B纵坐标分别为log8x1,log8x2.因为A、B在过点O的直线上,所以,点C、D坐标分别为(x1,log2x1),(x2,log2x2),由于log2x1==3log8x2,所以OC的斜率:k1=,OD的斜率:k2=,由此可知:k1=k2,即O、C、D在同一条直线上.(2)解:由BC平行于x轴知:log2x1=log8x2即:log2x1=log2x2,代入x2log8x1=x1log8x2得:x13log8x1=3x1log8x1,由于x1>1知log8x1≠0,∴x13=3x1.又x1>1,∴x1=

4、,则点A的坐标为(,log8).[例2]在xOy平面上有一点列P1(a1,b1),P2(a2,b2),...,Pn(an,bn)...,对每个自然数n点Pn位于函数y=2000()x(0

5、成一个思维难度较大的综合题目,本题主要考查考生对综合知识分析和运用的能力.属★★★★★级题目.知识依托:指数函数、对数函数及数列、最值等知识.错解分析:考生对综合知识不易驾驭,思维难度较大,找不到解题的突破口.技巧与方法:本题属于知识综合题,关键在于读题过程中对条件的思考与认识,并会运用相关的知识点去解决问题.解:(1)由题意知:an=n+,∴bn=2000().(2)∵函数y=2000()x(0bn+1>bn+2.则以bn,bn+1,bn+2为边长能构成一个三角形的充要条件是bn+2+bn+1>bn,即()2+()-1>0,解得a<-5(1+)或

6、a>5(-1).∴5(-1)

7、求考生具有较强的建模能力.●歼灭难点训练一、选择题1.(★★★★)定义在(-∞,+∞)上的任意函数f(x)都可以表示成一个奇函数g(x)和一个偶函数h(x)之和,如果f(x)=lg(10x+1),其中x∈(-∞,+∞),那么()A.g(x)=x,h(x)=lg(10x+10-x+2)B.g(x)=[lg(10x+1)+x],h(x)=[lg(10x+1)-x]C.g(x)=,h(x)=lg(10x+1)-D.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。