欢迎来到天天文库
浏览记录
ID:12427025
大小:441.50 KB
页数:5页
时间:2018-07-17
《决策树案例分析spss》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、给大家拜个晚年!这年也过完了,又要开始工作了!本想春节期间写写博客,但不忍心看到那么多的祝福被顶下去,过节就过个痛快的节日,不写了!直接上开心网,结果开了个“老友面馆”都经营到18级了!还是蛮开心的,但是我决定了从今天开始就不再玩了!今天我们来说说分类决策树的应用和操作!主要包括CHAID&CRT,是非常好用和有价值的多变量分析技术,·CHAID——Chi-squaredAutomaticInteractionDetector卡方自交互侦测决策树·CRT——ClassificationRegressionTree分类回归树; CHAID和CART是最有名的分类树方法,主
2、要用于预测和分类。在市场研究中经常用于市场细分和客户促销研究,属于监督类分析技术。其中,树根节点是独立变量-因变量,例如:使用水平、购买倾向、用户或非用户、客户类型、套餐类别、细分类别等。子节点基于独立变量和其他分类变量(父节点),按照卡方显著性不断划分或组合为树状结构。预测变量一般也是非数量型的分类变量。 CHAID最常用,但独立变量只能是分类变量,也就是离散性的,CRT可以处理数量型变量,有时候二者结合使用。CHAID和CRT都可以处理非数量型和定序性变量。 分类树方法产生真实的细分类别,这种类是基于一个独立变量得到的一种规则和细分市场。也就是说,每一个树叶都是
3、一个细分市场。 下面我们通过一个案例来操作SPSS软件的分类决策树模块 假设我们有一个移动业务数据,包含有客户的性别、年龄、语音费用、数据费用、客户等级、支付方式和促销套餐变量。我们现在期望能够得到针对不同的促销套餐来分析“客户画像”,这样有利于针对性的促销!也就是不同套餐客户特征描述! 因变量是促销套餐,其它是预测变量或自变量! 我们看到,首先要求我们定义变量的测量等级并定义好变量变标和值标!因为,CHAID和CRT具有智能特性,也就是自交互检验和自回归能力,所以对变量测量尺度要求严格! 为什么说变量测量等级重要呢?例如,我们有个变量叫学历(1-初中、2-
4、高中、3-大专、4-本科、5-硕士以上),如果我们设定为定序变量,则决策树可以自动组合分类,但无论如何都是顺序组合,也就是说可能(1-初中、2-高中、3-大专)为一类,(4-本科、5-硕士以上)为一类,但绝对不会把1和5合并一类;如果我们定义为名义变量,则可以任意学历组合为某类了! 基本原理:基于目标变量(独立变量)自我分层的树状结构,根结点是因变量,预测变量根据卡方显著性程度不断自动生成父节点和子节点,卡方显著性越高,越先成为预测根结点的变量,程序自动归并预测变量的不同类,使之成为卡方显著性。程序根据预先设定的树状水平数停止。最后每一个叶结点就是一个细分市场。当预测
5、变量较多且都是分类变量时,CHAID分类最适宜。 预测变量大部分都是人口统计资料,使研究者很快就可以找出不同细分市场特征。传统的交互分析对多维交叉表和归并类是一项繁重的工作。 首先,我们确定因变量后,放入其它自变量。接下来,我们要选择CHAID的验证和条件参数!一般来讲:我们主要设定父节点和子节点的数量,以及规定树状结构的水平数,如何生长!分类树将根据设定参数决定树的增长和停止!通常,我们考察总的样本量大小,父节点是子节点的两倍,当然如果设定的太小,树会非常茂盛,得到很多非常小的细分市场,可能没有实际营销意义!树的水平数也是同样道理!其它还有很多参数可以设定,比如分割样
6、本,错误分类成本,利润等,分类决策树可以直接输出结果和SPSS语法或SQL语法规则!(略)因为树比较大,看不清楚,我们需要在树查看器中分析!从查看器中我们可以看到,客户等级最显著,也最重要,首先跑上来!针对低端客户,账单支付方式重要,对于预付话费的人来讲,数据业务小于50.73的主要是Y类套餐!这样我们就可以看到这个类别的特征了!最后的分类预测正确分类84.4%。下面是生成的SQL语法规则:UPDATE
7、D ((数据业务ISNULL)OR(数据业务<=38.754));我们可以把语法规则嵌入在分析系统中就可以实现商业智能和营销了!当然,CRT基本方法和解读方式都是一样的!
此文档下载收益归作者所有